Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tọa độ điểm \(M\) là \(M\left(x;y\right).\)
\(\overrightarrow{MA}=\left(1-x;3-y\right);\overrightarrow{MB}=\left(4-x;-y\right);\overrightarrow{MC}=\left(2-x;-5-y\right).\)
Ta có: \(\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\overrightarrow{0}.\)
\(\left\{{}\begin{matrix}1-x+4-x-3\left(2-x\right)=0.\\3-y-y-3\left(-5-y\right)=0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-2x+5-6+3x=0.\\3-2y+15+3y=0.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0.\\y+18=0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1.\\y=-18.\end{matrix}\right.\) \(\Rightarrow M\left(1;-18\right).\)
Gọi \(M\left(a;b\right)\)
\(\Rightarrow\overrightarrow{MB}=\left(2-a;3-b\right)\Rightarrow2\overrightarrow{MB}=\left(4-2a;6-2b\right)\)
\(\overrightarrow{MC}=\left(-1-a;-2-b\right)\Rightarrow3\overrightarrow{MC}=\left(-3-3a;-6-3b\right)\)
\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(1-5a;-5b\right)=\overrightarrow{0}\)
\(\Rightarrow\left\{{}\begin{matrix}1-5a=0\\-5b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{5}\\b=0\end{matrix}\right.\) \(\Rightarrow M\left(\frac{1}{5};0\right)\)
Lời giải:
Gọi tọa độ điểm $M$ là \((a;b)\)
Khi đó: \(\left\{\begin{matrix} \overrightarrow{MA}=\left(\frac{1}{3}-a;2-b\right)\\ \overrightarrow{MB}=(-1-a;-5-b)\\ \overrightarrow{CB}=(-6;-9)\end{matrix}\right.\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CB}\)
\(\Leftrightarrow \left(\frac{1}{3}-a;2-b\right)+(-1-a;-5-b)=(-6;-9)\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}-a+(-1-a)=-6\\ 2-b+(-5-b)=-9\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{8}{3}\\ b=3\end{matrix}\right.\)
Vậy tọa độ điểm $M$ là \(\left(\frac{8}{3};3\right)\)
\(\overrightarrow{AB}=\left(-6;-3\right)=-3\left(2;1\right)\Rightarrow\) đường thẳng AB nhận \(\left(2;1\right)\) là 1 vtcp
Phương trình tham số đường thẳng AB có dạng: \(\left\{{}\begin{matrix}x=5+2t\\y=4+t\end{matrix}\right.\)
Do M thuộc AB nên tọa độ M có dạng \(M\left(5+2t;4+t\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-2t;-t\right)\\\overrightarrow{MC}=\left(-2-2t;-6-t\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MC}=\left(-2-4t;-6-2t\right)\)
Đặt \(T=\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\sqrt{\left(-2-4t\right)^2+\left(-6-2t\right)^2}=\sqrt{20\left(t+1\right)^2+20}\ge\sqrt{20}\)
Dấu "=" xảy ra khi \(t+1=0\Rightarrow t=-1\Rightarrow M\left(3;3\right)\)
câu 1: \(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=4\overrightarrow{AG}\) Ta có vế trái
\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{EB}+\overrightarrow{AG}+\overrightarrow{GC}+\overrightarrow{AG}+\overrightarrow{GD}\\ =2\overrightarrow{AE}+2\overrightarrow{AG}+\overrightarrow{GC}+\overrightarrow{GD}\\ =2\overrightarrow{AG}+2\overrightarrow{GE}+2\overrightarrow{AG}+\overrightarrow{GC}+\overrightarrow{GD}\\ =4\overrightarrow{AG}+2\overrightarrow{GE}+\overrightarrow{GC}+\overrightarrow{GD}\\ =4\overrightarrow{AG}+2\overrightarrow{GE}+\overrightarrow{GF}+\overrightarrow{FC}+\overrightarrow{GF}+\overrightarrow{FD}\\ =4\overrightarrow{AG}+2\left(\overrightarrow{GF}+\overrightarrow{GE}\right)+\overrightarrow{FC}+\overrightarrow{FD}\\ =4\overrightarrow{AG}\left(đpcm\right)\)
Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;3-y\right)\\\overrightarrow{MB}=\left(4-x;-y\right)\\\overrightarrow{MC}=\left(2-x;-5-y\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\left(x-1;y+18\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+18=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-18\end{matrix}\right.\)
\(\Rightarrow M\left(1;-18\right)\)