Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(n_{H^+}=0,3\times0,05=0,015\left(mol\right)\)
\(n_{OH^-}=2\times a\times0,2=0,4a\left(mol\right)\)
Theo bài \(PH=12\) là môi trường bazo. Vậy OH- hết
PT: \(H^++OH^-\rightarrow H_2O\)
o,4a 0,4a (mol)
\(\Rightarrow H^+dư=0,015-0,4a\)
Ta có : \(\dfrac{0,015-0,4a}{0,5}=10^{-12}\Leftrightarrow a=0,375\left(M\right)\)
Ta có: \(\left\{{}\begin{matrix}n_{H^+}=0,015\left(mol\right)\\n_{OH^-}=0,2a\left(mol\right)\end{matrix}\right.\)
Ta có: pH = 12
=> \(\dfrac{0,015-0,2a}{0,5}=10^{-12}\)
\(\Rightarrow a=0,075\)
\(n_{NaOH}=0,1.0,01=0,001(mol)\\ \Rightarrow n_{OH^{-}}=0,001(mol)\\ n_{HCl}=0,03.0,2=0,006(mol)\\ \Rightarrow n_{H^{+}}=0,006(mol)\\ H^{+}+OH^{-}\to H_2O\\ 0,001<0,006\\ OH^{-} hêt; H^{+} dư\\ n_{H^{+}}=0,006-0,001=0,005(mol)\\ [H^{+}]=\frac{0,005}{0,1+0,2}=\frac{1}{60}M\\ \to pH=-log(\frac{1}{60})=1,77 \)
Bài 1:
Ta có: \(\Sigma n_{OH^-}=n_{NaOH}+2n_{Ba\left(OH\right)_2}=0,05.0,01+0,05.0,005.2=0,001\left(mol\right)\)
\(n_{H^+}=n_{HCl}=0,05.0,015=0,00075\left(mol\right)\)
PT ion: \(OH^-+H^+\rightarrow H_2O\)
______0,001__0,00075 (mol)
⇒ OH- dư. nOH- (dư) = 2,5.10-4 (mol)
\(\Rightarrow\left[OH^-\right]=\frac{2,5.10^{-4}}{0,1}=2,5.10^{-3}M\Rightarrow\left[H^+\right]=4.10^{-12}M\)
\(\Rightarrow pH\approx11,4\)
Bài 2: Đáp án D
Giải:
Ta có: \(\Sigma n_{H^+}=n_{HCl}+2n_{H_2SO_4}=0,1.0,002+0,2.2.x=2.10^{-4}+0,4x\left(mol\right)\)
\(\Rightarrow\left[H^+\right]=\frac{2.10^{-4}+0,4x}{0,3}M\)
\(\Rightarrow pH=-log\left(\frac{2.10^{-4}+0,4x}{0,3}\right)=2,7\)
\(\Rightarrow x\approx9,964.10^{-4}\approx10^{-3}\)
Bạn tham khảo nhé!
\(a.n_{NaCl}=0,2.2=0,4\left(mol\right)\\ n_{CaCl_2}=0,5.0,2=0,1\left(mol\right)\\ \left[Na^+\right]=\left[NaCl\right]=\dfrac{0,4.1}{0,2+0,2}=1\left(M\right)\\ \left[Ca^{2+}\right]=\left[CaCl_2\right]=\dfrac{0,1.1}{0,2+0,2}=0,25\left(M\right)\\ \left[Cl^-\right]=1.1+0,25.2=1,5\left(M\right)\)
\(b.\\ n_{MgSO_4}=\dfrac{12}{120}=0,1\left(mol\right)\\ n_{Al_2\left(SO_4\right)_3}=\dfrac{34,2}{342}=0,1\left(mol\right)\\ \left[Mg^{2+}\right]=\left[MgSO_4\right]=\dfrac{0,1}{0,2+0,3}=0,2\left(M\right)\\ \left[Al^{3+}\right]=2.\left[Al_2\left(SO_4\right)_3\right]=2.\dfrac{0,1}{0,2+0,3}=0,4\left(M\right)\\ \left[SO^{2-}_4\right]=0,2.1+0,2.3=0,8\left(M\right)\)