K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Ta có a*b thuộc Z với mọi a,b nên Z đóng với phép toán *.

a*2 =a nên Z với phép toán * có phần tử trung hòa là 2.

Do đó Z với phép toán * là 1 nhóm.

Lại có a*b = b*a nên Z với phép toán * có tính giao hoán hay Z là nhóm giao hoán với phép toán *.

Đây là một bài toán tổ hợp, yêu cầu xây dựng một mô hình thỏa mãn các tính chất đã cho. Bài toán bắt đầu từ hai định nghĩa sau: Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập cân bằng nếu với hai điểm A, B thuộc S thì tồn tại điểm C thuộc S sao cho CA = CB (tức là C nằm trên trung trực AB).Ví dụ 3 đỉnh của một tam giác đều là một tập cân bằng, còn 4...
Đọc tiếp

Đây là một bài toán tổ hợp, yêu cầu xây dựng một mô hình thỏa mãn các tính chất đã cho. Bài toán bắt đầu từ hai định nghĩa sau: Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập cân bằng nếu với hai điểm A, B thuộc S thì tồn tại điểm C thuộc S sao cho CA = CB (tức là C nằm trên trung trực AB).

Ví dụ 3 đỉnh của một tam giác đều là một tập cân bằng, còn 4 đỉnh của một hình vuông thì không cân bằng. Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập không tâm nếu không tồn tại 4 điểm A, B, C, D thuộc S sao cho DA = DB = DC. Nói cách khác, nếu 3 điểm A, B, C thuộc S thì tâm đường tròn ngoại tiếp của tam giác ABC không thuộc S. 

Đề toán yêu cầu:

a) Chứng minh rằng với mọi n ≥ 3, tồn tại một tập cân bằng gồm n điểm trên mặt phẳng.

b) Tìm tất cả các giá trị n ≥ 3 sao cho tồn tại tập hợp gồm n điểm trên mặt phẳng, cân bằng và không tâm.

0
Câu 1. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.Câu 2. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 3. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 4. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 5. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.Câu 6. Tìm giá...
Đọc tiếp

Câu 1. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 2. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 3. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 4. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 5. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.

Câu 6. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.

Câu 7. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 8. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 9. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 10. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

--------------------------làm đầy đủ nha ^_^--------------------------------------------------------

0
18 tháng 12 2016

a)( x= 0 ; y = 1); (y=0; x= 1/2) đt1

(x=0;y = -1) ; (y=0;x= 1) đt2

b) giao điểm tức là cùng nghiệm

-2x+1 = x- 1 => x = 2/3 ; y = -1/3

A(2/3; -1/3)

c) anh xem đk // là làm dc, em mệt r

 

29 tháng 9 2017

sai r

khocroi

30 tháng 7 2020

Vì \(x\ne0,y\ne0\) nên điều kiện đã cho tương đương với \(\frac{x}{y^2}+\frac{y}{x^2}=2\Rightarrow\frac{x^2}{y^4}+\frac{y^2}{x^4}+\frac{2}{xy}=4\Leftrightarrow4\left(1-\frac{1}{xy}\right)=\frac{x^2}{y^4}+\frac{y^2}{x^4}-\frac{2}{xy}=\left(\frac{x}{y^2}-\frac{y}{x^2}\right)^2\)

\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\frac{1}{2}\left|\frac{x}{y^2}-\frac{y}{x^2}\right|\)

3 tháng 9 2020

a) đk: \(x\ge0;x\ne1\)

b) \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right)\div\frac{\sqrt{x}-1}{2}\)

\(A=\frac{x+2+\left(\sqrt{x}-1\right)\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{\sqrt{x}-1}{2}\)

\(A=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)

\(A=\frac{2\left(x-2\sqrt{x}+1\right)}{\left(x-2\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{2}{x+\sqrt{x}+1}\)

3 tháng 9 2020

c) Ta có: \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) 

=> \(\frac{2}{x+\sqrt{x}+1}>0\left(\forall x\ne1\right)\)

d) Ta chỉ có thể tìm GTLN thôi

Để A đạt GTLN => \(x+\sqrt{x}+1\) phải đạt GTNN

Dấu "=" xảy ra khi: \(x=0\)

Vậy Max(A) = 2 khi x = 0