Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi R là bán kính của đường tròn (O; 2). Ta có: R = 2
O A 2 = 1 2 + 1 2 = 2 ⇒ OA = 2 < 2
Vì OA < R nên điểm A nằm trong đường tròn (O; 2)
O B 2 = 2 2 + 2 2 = 2 + 2 = 4 ⇒ OB = 2
Vì OB = R nên điểm B thuộc đường tròn (O; 2)
O C 2 = 1 2 + 2 2 = 1 + 4 = 5 ⇒ OC = 5 > 2
Gọi R là bán kính của đường tròn O: R = 2
Ta có:
OA2 = 12 + 12 = 2 => OA = √2 < R
=> A nằm bên trong (O)
OB2 = 12 + 22 = 5 => OB = √5 > R
=> B nằm bên ngoài (O)
OC2 = (√2)2 + (√2)2 = 4 => OC = 2 = R
=> C nằm trên (O)
Gọi R là bán kính của đường tròn O: R = 2
Ta có:
OA2 = 12 + 12 = 2 => OA = √2 < R
=> A nằm bên trong (O)
OB2 = 12 + 22 = 5 => OB = √5 > R
=> B nằm bên ngoài (O)
O C 2 = ( √ 2 ) 2 + ( √ 2 ) 2 = 4 = > O C = 2 = R
=> C nằm trên (O)
Chọn đáp án C
Ta có:
Nên A nằm trong đường tròn tâm O bán kính R = 2
Do A(2; 4) nên A cách trục Ox 2 đơn vị, cách trục Oy 4 đơn vị
Khi đó đường tròn (A; 2) tiếp xúc với trục Ox và không giao nhau với trục Oy
O I K A E B H F C D G 1 1 2 2
a)
IO = OB – IB => (I) tiếp xúc trong với (O).
OK = OC – KC => (K) tiếp xúc trong với (O)
IK = OH + KH => (I) tiếp xúc ngoài với (K)
b)
Tứ giác AEHF có \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\) nên là hình chứ nhật
c)
c) \(\Delta AHB\) vuông nên AE.AB = AH2
\(\Delta AHC\)vuông nên AF . AC = AH2
Suy ra AE . AB = AF . AC
d) Gọi G là giao điểm của AH và EF
Tứ giác AEHF là hình chữ nhật => AH = EF
Ta có : GE = GH => \(\Delta GEH\)\(\Rightarrow\widehat{E_1}=\widehat{H_1}\)
Ta lại có \(\Delta IHE\)cân \(\Rightarrow\widehat{E_2}=\widehat{H_2}\)
\(\Rightarrow\widehat{E_1}+\widehat{E_2}=\widehat{H_1}+\widehat{H_2}=90^o\)
Do đó EF là tiếp tuyến của đường tròn (I)
Tương tự, EF là tiếp tuyến của đường tròn (K)
e) - Cách 1:
Ta có: \(EF=AH\le OA\) ( OA có độ dài không đổi )
Do đó EF lớn nhất khi AH = OA
<=> H trùng O hay dây AD đi qua O.
Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.