K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

2) Ta có: \(\frac{x_1}{y_2}=\frac{x_2}{y_1}\Rightarrow\frac{x_1^2}{y_2^2}=\frac{x_2^2}{y_1^2}=\frac{x_1^2+x_2^2}{y_1^2+y_2^2}=\frac{2^2+3^2}{52}=\frac{1}{4}\)

\(\Rightarrow\frac{x_1^2}{y_2^2}=\frac{1}{4}\Rightarrow y_2^2=16\Rightarrow\)\(\orbr{\begin{cases}y_2=-4\\y_2=4\end{cases}\Rightarrow}\)\(\orbr{\begin{cases}y_1=-6\\y_1=6\end{cases}}\)

=> KL....

12 tháng 2 2017

I2x+3I=x+2

TH1: Nếu \(x\le-\frac{3}{2}\)(*), =>I2x+3I=-2x-3

PT: -2x-3=x+2 <=> x=\(-\frac{5}{3}\)(tm (*))

TH2: Nếu \(x>-\frac{3}{2}\)(**), => I2x+3I=2x+3

PT: 2x+3=x+2 => x=-1 (tm (**))

Vậy x=...

13 tháng 12 2015

a,

b,hoành độ,tung độ

c,\(\left(x_0,y_0\right)\)

21 tháng 5 2019

( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0

vậy ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\ge\) 0

mà ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\le\)0

suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0

do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)

24 tháng 10 2018

1) Tìm x

\(2^x+2^{x+4}=544\)

\(\Leftrightarrow2^x\left(1+2^4\right)=544\)

\(\Leftrightarrow2^x.17=544\)

\(\Leftrightarrow2^x=32=2^5\)

<=>x=5

2) \(\frac{x}{z}=\frac{z}{y}\Rightarrow\hept{\begin{cases}\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x^2+z^2}{z^2+y^2}\\z^2=xy\end{cases}}\Rightarrow\frac{x^2+z^2}{z^2+y^2}=\frac{z^2}{y^2}=\frac{xy}{y^2}=\frac{x}{y}\)

24 tháng 10 2018

c)Câu hỏi của Hoàng Nhật Mai - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo bài làm ở link này nhé!!! Chúc bạn học tốt!!!

13 tháng 12 2019

Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn

 \(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\)\(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ;  \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)

\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)

\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)