Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ý 1 để bạn tự vẽ nhé
2. Xét phương trình hoành độ giao điểm :
\(x^2=5x+6\Leftrightarrow x^2-5x-6=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\) tương ứng hai nghiệm trên ta có tọa độ của hai giao điểm là ( -1,1) và (6,36)
3. d' song song với d nên suy ra d' có dạng : \(y=5x+m\text{ với }m\ne6\)
phương trình hoành độ giao điểm khi đó là : \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\text{ có hai nghiệm x1 x2 thỏa mãn }x_1.x_2=24\)
mà theo viet ta có : \(x_1.x_2=\frac{c}{a}=-m\Rightarrow m=-24\)
Thay lại phương trình ta có : \(x^2-5x+24=0\text{ vô nghiệm, do đó không tồn tại d' thỏa mãn đề bài}\)
HD: (d'): y= ax+b (a≠0).
- (d') // (d) nên \(\left\{{}\begin{matrix}a=5\\b\ne6\end{matrix}\right.\)⇒ (d'): y=5x+b
- Xét Pt hoành độ giao điểm của (P) với (d'):
x2=5x+b ⇔x2-5x-b =0 (1).
*) điện kiện có 2 nghiệm
*) theo viet P=-b=24 => b=-24
a) thay \(B\left(0;2\right)\) vào \(\left(d\right)\) ta có : \(\left(d\right):2=0+n-1\) \(\Leftrightarrow\) \(n=3\)
vậy \(n=3\) thì \(\left(d\right)\) đi qua điểm \(B\left(0;2\right)\)
b) xét hoành độ giao điểm của \(\left(d\right)\) và \(\left(p\right)\)
ta có : \(x^2=x+n-1\) \(\Leftrightarrow\) \(x^2-x-n+1=0\)
\(\Delta\) = \(1-4\left(-n+1\right)\) = \(1+4n-4\) = \(4n-3\)
phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\) \(\Delta\) \(>0\)
\(\Leftrightarrow\) \(4n-3>0\) \(\Leftrightarrow\) \(n>\dfrac{3}{4}\)
ta có : \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-n\end{matrix}\right.\)
ta có : \(4\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+3=0\)
\(\Leftrightarrow\) \(4\left(\dfrac{x_1+x_2}{x_1x_2}\right)-x_1x_2+3=0\)
thay vào ta có : \(4\left(\dfrac{1}{1-n}\right)-\left(1-n\right)+3=0\)
\(\Leftrightarrow\) \(\dfrac{4}{1-n}-1+n+3=0\) \(\Leftrightarrow\) \(\dfrac{4}{1-n}+2+n=0\)
\(\Leftrightarrow\) \(4+\left(2+n\right)\left(1-n\right)=0\) \(\Leftrightarrow\) \(4+2-2n+n-n^2=0\)
\(\Leftrightarrow\) \(-n^2-n+6=0\)
\(\Delta\) = \(1+24=25>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{1+5}{-2}\) = \(-3\) (loại)
\(x_2=\dfrac{1-5}{-2}\) = \(2\) (tmđk)
vậy x = 2 là thảo mảng điều kiện bài toán