K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

Trần Thanh Phương@Nguyễn Việt LâmMysterious Person

13 tháng 2 2020

nếu trong trường hợp tất cả các điểm tập trung tại 1 vùng lân cận thì chỉ cần đặc điểm M để điểm M cách \(A_i\) một khoản hơn 1

còn nếu nó tách làm 2 phần thì trường hợp 2 vùng này đối diện nhau là khả quan nhất nhưng số đo dây cung của góc \(45^0\) trong TH này là \(\sqrt{2}\) vì vậy vẫn có điểm thõa mãn bài toán

từ 3 vùng trở lên là nằm trong diện phân bố đều ==> mình làm lun trường hợp phân bố đều . khi đó điểm nào cũng thõa mãn

nếu trong trường hợp chia 3 không đều thì ta chỉ cần tìm M cách xa vùng nhiều điểm nhất là được

đây là cách giải biện luận của lớp 9 còn lớp 10 thì khác nhé khi đó đã có khái niệm về phương trình đường tròn rồi nên giải mới làm được

13 tháng 11 2018

Dễ c/m đc: \(\Delta AHB~\Delta DOE\)

=>  \(\frac{AB}{DE}=\frac{AH}{OD}=\frac{GH}{OE}=\frac{1}{2}\)

Gọi K là trung điểm AH 

Dễ c.m: AODK là hình bình hành

=> DK = OA = R

Xét tam giác ODA1:  \(OA_1^2=OD^2+DA_1^2=OD^2+DH^2=\frac{1}{2}\left(OH^2+DK^2\right)=\frac{1}{2}\left(OH^2+R^2\right)\)

MỌI NGƯỜI GIÚP MK Ý CHỨNG MINH DƯỚI ĐÂY:

Chứng minh:    \(OB_1^2=OB_2^2=\frac{1}{2}\left(OH^2+R^2\right);\)\(OC_1^2+OC_2^2=\frac{1}{2}\left(OH^2+R^2\right)\)

Câu 1 :Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). Lấy điểm D thuộcdây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm M.1) Chứng minh tức giác CDEM nội tiếp được đường tròn. Xác định tâm I của đường tròn ngoại tiếp tứgiác CDEM.2) Chứng minh AD.ED = BD.CD3) Chứng minh IC là tiếp tuyến của đường tròn (O)Câu 2 : Cho phương...
Đọc tiếp

Câu 1 :Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). Lấy điểm D thuộcdây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm M.

1) Chứng minh tức giác CDEM nội tiếp được đường tròn. Xác định tâm I của đường tròn ngoại tiếp tứgiác CDEM.

2) Chứng minh AD.ED = BD.CD3) Chứng minh IC là tiếp tuyến của đường tròn (O)

Câu 2 : Cho phương trình (ẩn x) : 2x2 - 2mx -m - 5 = 0   (1)

1) Chứng minh rằng với mọi giá trị của m , phương trình (1) luôn có hai nghiệm phân biệt 

2) Gọi x, x2 là hai nghiệm của phương trình (1)

    a) Tính x1 + x2 và x. x2 theo m 

    b) Tìm giá trị của m thỏa mãn hệ thức x1 . (x1 - 2x2) + x2 . (x2 - 2x1) = 15

Câu 3 : 

1) Vẽ đồ thị (P) của hàm số y = x2 trên hệ trục tọa độ Oxy.

2) Bằng phép tính, hãy tìm giá trị của m để đường thẳng (d): y = 2x – 3m cắt parabol (P) tại hai điểm phân biệt 

2
10 tháng 4 2017

Mình xin làm câu Vi-et thôi.

2/ \(2x^2-2mx-m-5=0\left(1\right)\)

a/ ( a = 2; b = -2m; c = -m - 5 )

\(\Delta=b^2-4ac\)

   \(=\left(-2m\right)^2-4.2.\left(-m-5\right)\)

   \(=4m^2+8m+40\)

    \(=\left(2m\right)^2+8m+2^2-2^2+40\)

     \(=\left(2m+2\right)^2+36>0\forall m\)

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=\frac{2m}{2}=m\\P=x_1x_2=\frac{c}{a}=\frac{-m-5}{2}\end{cases}}\)

Ta có: \(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=15\)

    \(\Leftrightarrow x_1^2-2x_1x_2+x_2^2-2x_1x_2=15\)

    \(\Leftrightarrow S^2-2P-4x_1x_2=15\)

    \(\Leftrightarrow m^2-2.\frac{-m-5}{2}-4S=15\)

   \(\Leftrightarrow m^2+\frac{2m+10}{2}-4m=15\)

  Quy đồng bỏ mẫu, mẫu chung là 2:

  \(\Leftrightarrow2m^2+2m+10-8m=15\)

  \(\Leftrightarrow2m^2-6m+10=15\)

 \(\Leftrightarrow2\left(m^2-3m+5\right)=15\)

 \(\Leftrightarrow m^2-3m+5=\frac{15}{2}\)

 \(\Leftrightarrow m^2-3m+5-\frac{15}{2}=0\)

  \(\Leftrightarrow m^2-3m-\frac{5}{2}=0\)

 \(\Leftrightarrow m^2-3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-\frac{5}{2}=0\)

\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2-\frac{19}{4}=0\)

\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\frac{19}{4}\)

\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\left(\frac{\sqrt{19}}{2}\right)^2\)

\(\Leftrightarrow m-\frac{3}{2}=\frac{\sqrt{19}}{2}\Leftrightarrow m=\frac{3+\sqrt{19}}{2}\)

Vậy:..

2 tháng 11 2017

 Cho hàm số y=f(x)=x3-3x2+1

a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.

b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).

c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.