K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

- Ta có: MB = MC và M nằm giữa B và C nên M là trung điểm của BC.

Do đó, AM có là đường trung tuyến của tam giác ABC

- Ta có:

\(\begin{array}{l}\dfrac{{GA}}{{MA}} = \dfrac{6}{9} = \dfrac{2}{3};\\\dfrac{{GB}}{{NB}} = \dfrac{2}{3};\\\dfrac{{GC}}{{PC}} = \dfrac{2}{3}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Ta có:

     \(\dfrac{{AG}}{{AM}} = \dfrac{6}{9} = \dfrac{2}{3}\);

     \(\dfrac{{BG}}{{BN}} = \dfrac{4}{6} = \dfrac{2}{3}\);

     \(\dfrac{{CG}}{{CP}} = \dfrac{4}{6} = \dfrac{2}{3}\).

26 tháng 3 2024

Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm                               a, Tính HM,PA,GB.                                 b, Chứng minh tam giác HPG cân

       

4 tháng 4 2016

mk pit làm phần a thui

vì AG=2GM 

+) AG=4 cm

=>4=2GM

=> MG=4:2=2 (cm)

+)gm+ag=am

+)mg=2 cm

+) ag=9cm

=>2+9=am

=> am=11 cm

tính độ dài đoạn cp và bn tương tự như trên

4 tháng 4 2016

cảm ơn rất nhiều ạ

17 tháng 9 2023

Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng \(\dfrac{2}{3}\)độ dài đường trung tuyến đi qua đỉnh ấy nên:

     \(\begin{array}{l}\dfrac{{GA}}{{AM}} = \dfrac{{GB}}{{BN}} = \dfrac{{GC}}{{CP}} = \dfrac{2}{3}\\ \to GA = \dfrac{2}{3}AM;GB = \dfrac{2}{3}BN;GC = \dfrac{2}{3}CP\end{array}\)

Vậy:

     \(GA + GB + GC = \dfrac{2}{3}AM + \dfrac{2}{3}BN + \dfrac{2}{3}CP = \dfrac{2}{3}(AM + BN + CP)\). 

13 tháng 5 2018

a) Theo bài ra:  vuông tại A

 áp dụng Định lý Pytago ta có 



b) 
Trong tam giác vuông ABC có trung tuyến AM nên 

 AG = ...

13 tháng 5 2018

mình không hiểu ạ

10 tháng 6 2020

Tự vẽ hình

a,AD ĐL py-ta-go vào \(\Delta\)vuông ABC có

\(BC^2=AB^2+AC^2\)

\(x^2=9^2+12^2\)

\(x^2=81+144\)

\(x^2=225\)

\(x=\sqrt{225}=15\)

b,Xét \(\Delta BAN\)và \(\Delta CDN\)có:

           BN=DN

         \(\widehat{BNA}=\widehat{DNC}\)

           NA=NC

\(\Rightarrow\Delta BNA=\Delta CDN\left(c.g.c\right)\)

c,Vì \(\Delta BNA=\Delta CND\left(cmt\right)\)

\(\Rightarrow\widehat{BAN}=\widehat{DCN}\)(2 cạnh t.ư)

Mà 2 góc này ở VTSLT

\(\Rightarrow CD//AB\)

Emilia Contrarchson

Hình như là sai rùi! Sorry

a) Theo bài ra: \(\Delta ABC\) vuông tại A

\(\Rightarrow\)Áp dụng Định lý Pytago ta có :

\(AB^2AC^2=AB^2\rightarrow AB^2=9^2+12^2=BC=\sqrt{255}=\)15(cm)
b) 
Trong tam giác vuông ABC có trung tuyến AM nên : AM=BC: 2 =\(\frac{15}{2}\)

\(\rightarrow\)AG = ...

12 tháng 5 2021

A B C M G N D

a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\)  (định lí Pytago)

\(\Rightarrow BC^2=225\Rightarrow BC=\sqrt{225}=15\left(cm\right)\)

Vậy \(BC=15cm\).

b) Xét \(\Delta ABC\) vuông tại A có AM là đường trung truyến

\(\Rightarrow AM=\frac{1}{2}BC\) (định lí)

\(\Rightarrow AM=\frac{1}{2}.15=7,5\)

Ta có: 2 đường trung truyến AM và BN cắt nhau tại G

\(\Rightarrow\)G là trọng tâm của \(\Delta ABC\)

\(\Rightarrow AG=\frac{2}{3}AM=\frac{2}{3}.7,5=5\left(cm\right)\)

Vậy \(AG=5cm\).

c) Xét \(\Delta ABN\) và \(\Delta CDN\) có:

BN = DN (gt)

\(\widehat{ANB}=\widehat{CND}\) (2 góc đối đỉnh)

AN = CN (vì N là trung điểm của AC)

\(\Rightarrow\Delta ABN=\Delta CDN\left(c.g.c\right)\)   (đpcm)