K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Ta có hình vẽ:

x A y B C M

Xét tam giác AMB và tam giác AMC có:

AM: cạnh chung

AB = AC (GT)

BM = MC (M là trung điểm BC)

Vậy tam giác AMB = tam giác AMC.

14 tháng 10 2017

Do At là phân giác của góc xAy

=>xAt=yAt

Xét TG(tam giác) ADB và TG CDA có:

AB=AC (GT)

xAt=yAt( chứng minh trên)

AD là cạnh chung

=>TG(tam giác) ADB = TG CDA (c.g.c)

Các cặp cạnh và góc tương ứng bằng nhau

1 tháng 3 2017

x A y D E C B 1 2 1 1 1 1 I

Giải:

a) Xét \(\Delta ACD,\Delta ABE\) có:

AC = AB ( gt )

\(\widehat{A}\): góc chung

AD = AE ( gt )

\(\Rightarrow\Delta ACD=\Delta ABE\left(c-g-c\right)\) ( đpcm )

b) Vì \(\Delta ACD=\Delta ABE\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) ( góc t/ứng )

hay \(\widehat{IBD}=\widehat{ICE}\) ( đpcm )

Vậy...

13 tháng 2 2022

a) d là đường trung trực của đoạn thẳng AB (gt).

   M là điểm thuộc d (gt).

\(\Rightarrow MA=MB\) (Tính chất điểm thuộc đường trung trực).

\(\Rightarrow\Delta MAB\) cân tại M.

b) Xét \(\Delta MAB\) cân tại M:

MO là trung tuyến (O là trung điểm của AB).

\(\Rightarrow\) MO là phân giác \(\widehat{EMF}\) (Tính chất tam giác cân).

\(\Rightarrow\widehat{EMO}=\widehat{FMO}.\)

Xét \(\Delta MOE\) vuông tại E và \(\Delta MOF\) vuông tại F:

\(\widehat{EMO}=\widehat{FMO}\left(cmt\right).\\ MOchung.\)

\(\Rightarrow\) \(\Delta MOE\) \(=\) \(\Delta MOF\) (cạnh huyền - góc nhọn).

\(\Rightarrow ME=MF\) (2 cạnh tương ứng).

\(\Rightarrow\Delta MEF\) cân tại M.

11 tháng 1 2020

a) do tam giác ABC có \(\widehat{B}>\widehat{C}\)

\(\Rightarrow AB< AC\)

b) câu b đề bài bạn ghi sai hết sạch em kiểm tra lại đề nhé

11 tháng 1 2020

câu b nè :

xét \(\Delta AMB\)và \(\Delta CMD\):

AM = DM ( gt)

\(\widehat{AMB}=\widehat{CMD}\)( đối đỉnh)

=> CD = 

BM = CM ( gt)

=> \(\Delta AMB\)=\(\Delta CMD\)(c.g.c)

=>AB=CD ( 2 cạnh tương ứng)

câu còn lại dễ rồi bạn tự làm đi nehs ( vì mik phải đi học lun về r mik giải típ cho

8 tháng 1 2017

hình bạn tự vẽ nhé

xét tam giác ADM và tam giác ADE có 

     AD = AE (GT)

     AM là cạnh chung

     DM = ME (gt)

Do đó tam giác ADM bằng tam giác ADE (c.c.c)

    suy ra \(\widehat{BAM}=\widehat{CAM}\)2 GÓC TƯƠNG ỨNG 

mà AN nằm giữa AB và AC

    suy ra TIA AN LÀ TIA PHÂN GIÁC GÓC BAC

  TƯƠNG TỰ TA CÓ TAM GIÁC ABN VÀ TAM GIÁC ACN BẰNG NHAU (C.C.C)

   suy ra \(\widehat{BAN}=\widehat{CAN}\)2 GÓC TƯƠNG ỨNG

MÀ TIA AN NẰM GIỮA TIA AB VÀ TIA AC

 SUY RA AN LÀ PHÂN GIÁC GÓC BAC (2)

  từ (1) và (2) suy ra A,M,N thẳng hàng

8 tháng 1 2017

Hình tự vẽ nha thanh niên :)

* Xét tam giác ADM và tam giác AEM có

AM là cạnh chung

AD=AE( theo GT )

DM=EM( M là trung điểm của DE)

=> Tam giác ADM = Tam giác AEM (c.c.c)

=> \(\widehat{DAM}\)=\(\widehat{EAM}\)(2 góc tương ứng)

=>AM là tia phân giác của \(\widehat{DAE}\)(1)

* Xét tam giác ABN và tam giác ACN có

AN là cạnh chung

AB=AC ( theo GT )

BN=CN ( N là trung điểm của BC )

=> Tam giác ABN = tam giác ACN (c.c.c)

=> \(\widehat{BAN}\)=\(\widehat{CAN}\)( 2 góc tương ứng )

=>AN là tia phân giác của \(\widehat{BAC}\)(2)

Từ (1) và (2) => A;M;N thằng hàng ( A;M;N thuộc tia phân giác của góc BAC)