K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2016

de lam chi can chi doi 2 nam nua la em tra loi dc a

☺☺☺

30 tháng 5 2019

a) Ta chứng minh:

S A E F = S A B C D = 1 4 S A B F  

b) Từ câu a suy ra EH = CK

c) Gọi SBDE = S1; SADE = S2;

Ta chứng minh DE = DC;

Ta tính được:

ABDC = S1; SADC = S2, suy ra SABC = 2(S1 + S2) = 2.SABD

26 tháng 3 2022

\(S_{DEF}=S_{BDF}+S_{DCE}+S_{AFE}+S_{ABC}=2\left(S_{ABD}+S_{BCE}+S_{AFC}\right)+S_{ABC}=2.\left(S_{ABC}+S_{ABC}+S_{ABC}\right)+S_{ABC}=7.S_{ABC}\)

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
9 tháng 2 2022

a. Xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CF=BF\\BD=AD\end{matrix}\right.\)\(\Rightarrow\)DF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)DF//AC hay DF//EC(1)

Lại có, xét \(\Delta ABC\)\(\left\{{}\begin{matrix}CE=AE\\BD=AD\end{matrix}\right.\)\(\Rightarrow\) ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\) ED//BC hay ED//CF(2)

Từ (1) và (2) suy ra tứ giác FDEC là hình bình hành

b. Ta có: \(\left\{{}\begin{matrix}FD//AC\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow FD\perp AB\Rightarrow\widehat{FDA}=90^o\)

Tương tự xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CE=AE\\CF=BF\end{matrix}\right.\)\(\Rightarrow\)EF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\) EF//AB

Có: \(\left\{{}\begin{matrix}EF//AB\\AC\perp AB\end{matrix}\right.\)\(\Rightarrow EF\perp AC\Rightarrow\widehat{FEA}=90^o\)

Xét tứ giác EFDA có: \(\widehat{FEA}=\widehat{EFD}=\widehat{EAD}=90^o\)

\(\Rightarrow\) Tứ giác EFDA là hình chữ nhật \(\Rightarrow\) AF=DE

c. Xét \(\Delta AKC\) vuông tại K có KE là đường trung tuyến ứng với cạnh huyền

\(\Rightarrow EK=\dfrac{AC}{2}=CE=EA\)

Mà EA=DF (EDFA là hình chữ nhật)

\(\Rightarrow EK=DF\)

Xét tứ giác KDEF có: \(\left\{{}\begin{matrix}DK//EF\\DF=EK\end{matrix}\right.\)\(\Rightarrow\) Tứ giác KDEF là hình thang cân

29 tháng 11 2021

ok

29 tháng 11 2021

a: Xét tứ giác ADCP có 

N là trung điểm của AC
N là trung điểm của DP

Do đó: ADCP là hình bình hành