K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

1 tháng 9 2018

Đáp án B

Phương pháp: Xác suất của biến cố A là n A n Ω  trong đó nA là số khả năng mà biến cố A có thể xảy ra, n Ω  là tất cả các khả năng có thể xảy ra.

Một tam giác được tạo thành khi nối ba điểm không thẳng hàng bất kì với nhau.

Cách giải

Số tam giác được tạo thành khi nối các điểm đó với nhau là: 

Gọi biến cố A: “Tam giác có hai đỉnh màu đỏ”.

Khi đó n A   =   C 6 2 . C 4 1   =   60

4 tháng 10 2017

Chọn D

Cách 1:

 

Gọi các điểm được đánh dấu để chia đều các cạnh của tứ diện đều ABCD như hình vẽ.

+ Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.

Số phần tử của S là số cách chọn ra 3 điểm không thẳng hàng trong số 18 điểm đã cho.

Chọn ra 3 điểm trong 18 điểm trên: có  C 18 3  cách.

Chọn ra 3 điểm thẳng hàng trong 18 điểm trên có 6. C 6 3 = 6 cách.

Suy ra số tam giác thỏa mãn là  C 18 3 - 6 = 810

+ Gọi T là tập hợp các tam giác lấy từ ABCD sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện ABCD.

- Chọn 1 cạnh của tứ diện để mặt phẳng chứa tam giác chỉ song song với đúng cạnh đó: có  C 6 1  cách.

Xét các tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD, suy ra tam giác đó phải có một cạnh song song với BD.

- Có 6 cách chọn cạnh song song với BD là

- Giả sử ta chọn cạnh  M 2 N 2  là cạnh của tam giác. Cần chọn đỉnh thứ 3 của tam giác trong 16 điểm còn lại. 

Do  M 2 N 2 ⊂ (ABD) mà mặt phẳng chứa tam giác song song với BD nên đỉnh thứ 3 không thể là 7 điểm còn lại nằm trong mp(ABD).

Do mặt phẳng chứa tam giác chỉ song song với BD nên đỉnh thứ 3 không được trùng với một trong ba điểm E 2 ,   F 2 ,   P 2 . Vậy đỉnh thứ 3 chỉ được chọn trong 16 -7 - 3 = 6 điểm còn lại.

Suy ra có 6 tam giác có 1 cạnh là  M 2 N 2 và mặt phẳng chứa nó chỉ song song với BD.

Vậy số tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD là: 6.6 = 36.

Tương tự cho các trường hợp khác, ta có số tam giác mà mặt phẳng chứa nó chỉ song song với đúng một cạnh của tứ diện ABCD là: 36.6 = 216.

Vậy xác suất cần tìm là 

Cách 2: Lưu Thêm

+) Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.

Chọn ra 3 điểm trong 18 điểm trên: có  C 18 3  cách. 

Trong số  C 18 3  đó, có 6 cách chọn ra 3 điểm thẳng hàng trên các cạnh.

Suy ra n(S) =  C 18 3 - 6 = 810

+) Xét phép thử: “Lấy ngẫu nhiên một phần thử thuộc S”. Ta có

+) Gọi T là biến cố: “Mặt phẳng chứa tam giác được chọn song song với đúng một cạnh của tứ diện đã cho”.

Chọn một cạnh của tứ diện: 6 cách, (giả sử chọn AB).

Chọn đường thẳng song song với AB: 6 cách, (giả sử chọn PQ).

Chọn đỉnh thứ 3: 6 cách, (M, N, E, K, F, I).

Suy ra n(T) = 6.6.6 = 216

Vậy 

6 tháng 4 2019

Đáp án B

Số tam giác được tạo bởi 2 đỉnh trên d1 và 1 đỉnh trên d2 là:  C 6 2 . C 4 1 = 60 . Số tam giác được tạo bởi 1 đỉnh trên d1 và 2 đỉnh trên d2 là:  C 6 1 . C 4 2 = 36 . Do đó số tam giác được tạo thành là: 60 + 36 = 96. Xác suất cần tìm là:  60 96 = 5 8 .

13 tháng 2 2018

Đáp án C.

- Số tam giác tạo thành là: kJfyqAYO9kpo.png

- Tam giác ABC tạo thành có 2 cạnh cắt trục tọa độ khi B; C thuộc 1 góc phần tư, A thuộc góc phần tư khác:

+ A thuộc góc phần tư thứ nhất, có Td2knkiEdtOA.png tam giác thỏa mãn.

+ A thuộc góc phần tư thứ hai, có 7Q2aAcOQ7qao.png tam giác thỏa mãn.

+ A thuôc góc phần tư thứ ba, có RCBzrfwTCGVw.png tam giác thỏa mãn.

+ A thuôc góc phần tư thứ tư, có fCZzOzh3bCli.png tam giác thỏa mãn.

- Xác suất cần tìm là: nn5Mxs3240xy.png

6 tháng 7 2019


6 tháng 8 2019

Chọn B

 Lấy ba điểm phân biệt không thẳng hàng sẽ tạo thành một tam giác nên số tam giác tạo thành là: