K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

\(x^2+2y^2-2xy+4y+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y+2=0\end{cases}}\Leftrightarrow x=y=-2\)

Vậy \(x+y=-2-2=-4\)

8 tháng 10 2017

\(x^2-2xy+y^2+y^2+4y+4=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)

\(\left\{{}\begin{matrix}x=y\\y=-2\end{matrix}\right.\)

Vậy : x+y=-4

27 tháng 6 2017

\(x^2+2y^2-2xy+4y+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)

Dễ thấy: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2\ge0\)

Xảy ra khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\)