Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4};...;\frac{a_{2015}}{a_{2016}}=\frac{a_{2016}}{a_{2017}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=k\)
\(\Rightarrow\frac{a_1^{2016}}{a_2^{2016}}=\frac{a_2^{2016}}{a_3^{2016}}=...=\frac{a_{2016}^{2016}}{a_{2017}^{2016}}=\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=k^{2016}\left(1\right)\)
Ta lại có:
\(k^{2016}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\frac{a_1}{a_{2017}}\left(2\right)\)
Từ (1) và (2) \(\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=\frac{a_1}{a_{2017}}\)
a) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
⇒3A=3(3+32+33+...+32015+32016)⇒3A=3(3+32+33+...+32015+32016)
⇒3A=32+33+34+...+32016+32017⇒3A=32+33+34+...+32016+32017
⇒3A−A=(32+33+...+32017)−(3+32+...+32016)⇒3A−A=(32+33+...+32017)−(3+32+...+32016)
⇒2A=32017−3⇒A=32017−32⇒2A=32017−3⇒A=32017−32
Vậy A=32017−32A=32017−32
b) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
=(3+32+33+34)+...+(32013+32014+32015+32016)=(3+32+33+34)+...+(32013+32014+32015+32016)
=3(1+3+32+33)+...+32013(1+3+32+33)=3(1+3+32+33)+...+32013(1+3+32+33)
=3.40+...+32013.40=40(3+...+32013)=3.40+...+32013.40=40(3+...+32013)
Vậy A có chữ số tận cùng là 0
c) Dễ thấy:
AA chia hết cho 33
AA không chia hết cho 3232
Mà 33 là số nguyên tố
Nên A không là số chính phương
Ta có: A = \(3+3^2+3^3+...+3^{2015}+3^{2016}\)
a) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-3\)
\(2A=3^{2017}-3\)
Suy ra \(A=\frac{3^{2017}-3}{2}\)
b) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-1\)
\(2A=3^{2017}-1\)
Sau đó bạn tự giải tiếp phần b)
c) Ta có: \(3;3^2;3^3;...;3^{2015};3^{2016}⋮3\Rightarrow A⋮3\)
Mà \(3⋮̸3^2\). Suy ra A không chia hết cho 32
Ta lại có: A chia hết cho 3 nhưng không chia hết cho 32
Vì thế A không phải là số chính phương
tính 3A
XONG LẤY 3A-A
LÀ RA
LM ĐC MÀ MIK K CÓ THỜI GIAN NÊN CHỈ GIÚP BN ĐC THẾ
Ta có: A = 3 +32 +33 +...+32015+32016
A = 3+ 32 + 32.3 + 32.32+ ...+32.32013 + 32.32014
A = 3+ 32(3+32+33+...+32013+32014)
Ta thấy: một số chính phương chia hết cho 3 thì phải chia hết cho 32
Xét tổng A ta có: 3 không chia hết cho 32
32(3+32+33+...+32013+32014) chia hết cho 32
\(\Rightarrow\)A không chia hết cho 32 mà A chia hết cho 3 nên A không là số chính phương
Mình làm tắt xíu mong bạn làm được nha
=>A=3 + 32(3+32+...+32014)=3+9B
Vì A chia hết cho 3 nhưng A chia 9 dư 3
=> A không là số chính phương
A= 3 + 32 + 33 + ... + 32016
3A= 32 + 33 + ... + 32016 + 32017
3a-a= 32017 - 3
2a= 32017 - 3
a= (32017 - 3) : 2
a, 3A = 32 + 33 + 34 +...+ 32016 + 32017
3A - A = 2A = ( 32+ 33 + 34 +...+ 32016 + 32017) - (3+ 32 + 33 +...+ 32015 + 32016)
2A = 32+ 33 + 34 +...+ 32016 + 32017 - 3- 32 - 33 -...- 32015 - 32016
2A = 32017 - 3
2A = 3(32016 - 1)
A = 1,5 ( 32016 -1)
a, 3A=3^2+3^3+3^4+...+3^2016+3^2017
2A=3A-A=3^2017-3
A=3^2017-3/2
a.
A=3+32+33+...+32015+32016
3A = 32+33+...+32016+32017
3A - A = (32+33+...+32016+32017 ) - (3+32+33+...+32015+32016 )
2A = 32017 - 3
A = \(\frac{\text{ }3^{2017}-3}{2}\) \(\frac{\text{3^{2017} - 3}}{2}\)
1) (x + 2016)2016 + |y - 2017|2017 = 0
\(\Leftrightarrow\hept{\begin{cases}\left(x+2016\right)^{2016}=0\\\left|y-2017\right|^{2017}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2016=0\\y-2017=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2016\\y=2017\end{cases}}\)
OK để mình giúp:
Ta có:
\(\left\{{}\begin{matrix}x^2+x=x\left(x+1\right)⋮2\\-2016y⋮2\end{matrix}\right.\Rightarrow x^2+x-2016y⋮2\)
Lại có: \(\left(-2016\right)^2+2017\) không chia hết cho 2
=> Vô nghiệm
Ta có
20162017 có chữ số tận ccùg là 6
Ta lại có 20174 có tận cùng là 1 nên (20174)504 co chữ số tận cùng là 1.
=> 20162017 + 20172016 có chữ số tận cùng là 7.
Mà không có số chính phương nào có tận cùng là 7 nên số đã cho không phải số chính phương
Ta có: 20162017 tận cùng = 1
Suy ra 20162017+20172016 tận cùng=7
Mà không có số chính phương tận cùng = 7 nên không phải