K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 2 2020

Dãy đã cho là cấp số nhân vô hạn với \(u_1=1\) và công bội \(q=-\frac{1}{2}\)

Do \(\left|q\right|< 1\) áp dụng công thức tổng cấp số nhân lùi vô hạn:

\(S=\frac{u_1}{1-q}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ...\)

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} =  - \frac{1}{2}\) và công bội \(q =  - \frac{1}{2}\) nên: \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ... = \frac{{ - \frac{1}{2}}}{{1 - \left( { - \frac{1}{2}} \right)}} =  - \frac{1}{3}\)

b) \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ...\)

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = \frac{1}{4}\) và công bội \(q = \frac{1}{4}\) nên: \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ... = \frac{{\frac{1}{4}}}{{1 - \frac{1}{4}}} = \frac{1}{3}\)

NV
23 tháng 2 2020

\(A=lim\frac{\sqrt{n+2}+\sqrt{n+1}}{1}=lim\left[n\left(\sqrt{1+\frac{2}{n}}+\sqrt{1+\frac{1}{n}}\right)\right]=+\infty.2=+\infty\)

\(B=lim\frac{8^3.64^n-9.27^n}{4^4.64^n+5^3.25^n}=\frac{8^3-9.\left(\frac{27}{64}\right)^n}{4^4+5^3\left(\frac{25}{64}\right)^n}=\frac{8^3}{4^4}=2\)

\(1;-\frac{1}{2};\frac{1}{4}...\) là dãy cấp số nhân lùi vô hạn có \(u_1=1\)\(q=-\frac{1}{2}\)

Do \(\left|q\right|< 1\) nên theo công thức tổng cấp số nhân:

\(S_n=\frac{u_1}{1-q}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)

22 tháng 2 2020

câu tính tổng S mk làm đc oy nhé k cần lm câu đó nữa đâu

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{3}\) nên

\(1 + \frac{1}{3} + {\left( {\frac{1}{3}} \right)^2} + ... + {\left( {\frac{1}{3}} \right)^n} + ... = \frac{1}{{1 - \frac{1}{3}}} = \frac{3}{2}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_1} = 1,\;q = \frac{{\frac{1}{2}}}{1} = \frac{1}{2}\).

Suy ra công thức tổng quát của dãy số \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\).

Chọn đáp án D.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(S = \frac{{{u_1}}}{{1 - q}} = \frac{{\frac{2}{3}}}{{1 - \frac{{ - 1}}{4}}} = \frac{8}{{15}}\)

b) \(1,\left( 6 \right) = \frac{5}{3}\)

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

Lời giải:

Xét hạng tử tổng quát:
\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{(n+1)-n}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1)}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cho $n=1,2,...$ thì:

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=1-\frac{1}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

......

\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(\Rightarrow U_n=1-\frac{1}{\sqrt{n+1}}\)

\(\Rightarrow \lim\limits U_n=\lim (1-\frac{1}{\sqrt{n+1}})=1\)