Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có abcd + abc + ab + a = 2235
Đặt cột dọc lí luận để tìm a; b; c; d (a lí luận trước: a=1 hoặc a = 2)
..................
Số thứ nhất là: 2012
ĐS: 2012
Gọi a là số thứ 4 có 1 chữ số
Số thứ 3 bằng a x10 +b hay ab (số có 2 chữ số)
Số thứ 2 bằng ab x10 +c hay abc (số có 3 chữ số)
Số thứ 1 bằng abc x10 +d hay abcd (số có 4 chữ số)
Ta có: abcd + abc + ab + a =2235
hay 1111a + 111b + 11c + d = 2235
=>a=2 (vì a=3 thì lớn hơn 2235, a=1 thì b,c,d lớn nhất cũng nhỏ hơn 2235)
2222+111b+11c+d = 2235
=>b=0 (vì b=1 thì lớn hơn 2235)
2222+000+11c+d=2235
=>c=1 (vì c=2 thì lớn hơn và c=0 thì bé hơn 2235)
2222+000+11+d=2235
=>d=2
Số thứ nhất: 2012
Gọi a là số thứ 4 có 1 chữ số Số thứ 3 bằng a x10 +b hay ab (số có 2 chữ số) Số thứ 2 bằng ab x10 +c hay abc (số có 3 chữ số) Số thứ 1 bằng abc x10 +d hay abcd (số có 4 chữ số) Ta có: abcd + abc + ab + a =2235 hay 1111a + 111b + 11c + d = 2235 =>a=2 (vì a=3 thì lớn hơn 2235, a=1 thì b,c,d lớn nhất cũng nhỏ hơn 2235) 2222+111b+11c+d = 2235 =>b=0 (vì b=1 thì lớn hơn 2235) 2222+000+11c+d=2235 =>c=1 (vì c=2 thì lớn hơn và c=0 thì bé hơn 2235) 2222+000+11+d=2235 =>d=2 Số thứ nhất: 2012
Gọi a là số thứ 4 có 1 chữ số
Số thứ 3 bằng a x10 +b hay ab (số có 2 chữ số)
Số thứ 2 bằng ab x10 +c hay abc (số có 3 chữ số)
Số thứ 1 bằng abc x10 +d hay abcd (số có 4 chữ số)
Ta có: abcd + abc + ab + a =2235
hay 1111a + 111b + 11c + d = 2235
=>a=2 (vì a=3 thì lớn hơn 2235, a=1 thì b,c,d lớn nhất cũng nhỏ hơn 2235)
2222+111b+11c+d = 2235
=>b=0 (vì b=1 thì lớn hơn 2235)
2222+000+11c+d=2235
=>c=1 (vì c=2 thì lớn hơn và c=0 thì bé hơn 2235)
2222+000+11+d=2235
=>d=2
Số thứ nhất: 2012
tham khảo ở đây
Câu hỏi của nguyễn hoàng mỹ dân - Toán lớp 5 - OLMBài giải: Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)
giải thế này đúng ko các cậu
Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a.
Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được :
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được :
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại : 1804 + 180 + 18 + 1 = 2003 (đúng)
Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)
Số thư hai là 400.