Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
F D E B C A M K N G I
Nối A vs N
a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF
=> AN//CE và AN =1/2. CE
=> AN=1/2.BC(vì BC = CE) => AN =BM(vì BM = 1/2. BC)
xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng) => tg ANMB là hbh=> MN//AB và AB=MN (1) ;
xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) => IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD
Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD) (2)
Từ (1),(2)=> IK=MN
Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD
Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD)
=> tg MNIK là hbh (đpcm)
b) Do tg MNIK là hbh ( câu a) mà G là gđ của IM và KN nên G là t/đ của IM là KN
=> IG=MG và KG=NG
Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM
K là t/đ của DG(gt) => Dk=KG => DK=KG=GN
xét tg ABC có: AM là đg trung tuyến (gt) và AI=IG=GM (cmt) => G là trọng tâm của tg ABC (*)
xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF (**)
Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF
=> Tg ABC và tg DEF có cùng trọng tâm là G (đpcm)
Câu a) và câu b) bạn biết rồi nên mình bỏ qua nha.
Câu c) nè:
OM cắt HD tại M'
Vì OM//AH(cùng vuông góc BC) và O là trung điểm AD nên M' là trung điểm HD
Tam giác ACD vuông => CD vuông góc AC => CD//BH (cùng vuông góc AC)
Chứng minh tương tự có BD//CH
Tứ giác CDBH có 2 cặp cạnh đối song song nên là hình bình hành => 2 đường chéo cắt nhau tại trung điểm mỗi đoạn => M trùng M'
=> H, M, D thẳng hàng.
A B C D E M N I K
Xin lỗi vì hình không được chính xác cho lắm.
a) Dễ thấy DE là đường trung bình nên DE // BC => Tứ giác BCDE là hình thang
b) Dễ thấy MN là đường trung bình do đó MN // ED (và BC nữa nhưng ở đây ko cần:v)
Ta có MN // ED -> MI // ED (1) . Mà M là trung điểm BE(2) . Từ (1) và (2) có ngay I là trung điểm BD.
Chứng minh tương tự (bạn tự chứng minh nhá) ta cũng có K là trung điểm CE.
c) Từ câu b) ta suy ra MI là đường trung bình nên \(MI=\frac{1}{2}ED\)
Tương tự \(KN=\frac{1}{2}ED\). Bây giờ phải chứng minh \(IK=\frac{1}{2}ED\) là xong . Tuy nhiên mình chưa nghĩ ra.
Làm tiếp:
c)Dễ thấy MK là đường trung bình (do từ câu b thì K là trung điểm EC)
Do đó \(MK=\frac{1}{2}BC\Leftrightarrow MI+IK=\frac{1}{2}BC\)
\(\Rightarrow IK=\frac{1}{2}BC-MI=\frac{1}{2}BC-\frac{1}{2}ED=\frac{1}{2}ED\) (do \(ED=\frac{1}{2}BC\))
Từ đây ta có thể suy ra đpcm.
A B C H M O G N
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
A B C D M N P Q E F T S
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)