K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Câu 1:

A)

a) Để \(\frac{-5}{n-2}\)đạt giá trị nguyên thì \(-5⋮n-2\)

Vì \(-5⋮n-2\Rightarrow n-2\inƯ\left(-5\right)=\left(\pm1;\pm5\right)\) 

Ta có bảng giá trị:

n-215-1-5
n371-3

Đối chiếu điều kiện \(n\inℤ\Rightarrow n\in\left(3;7;1;-3\right)\)

Đến câu b,c cậu cũng lí luận để chứng minh tử phải chia hết cho mẫu, còn tớ chỉ cần tách và đưa ra kết quả thôi nhé

b) Ta có:                   \(n-5⋮n+1\)

\(\Rightarrow\left(n+1\right)-6⋮n+1\)

\(\Rightarrow-6⋮n+1\)

Vì \(-6⋮n+1\Rightarrow n+1\inƯ\left(-6\right)=\left(\pm1;\pm2;\pm3;\pm6\right)\)

Ta có bảng giá trị:

n+11236-1-2-3-6
20125-2-3-47

Đối chiếu điều kiện \(n\inℤ\Rightarrow\left(0;1;2;5;-2;-3;-4;-7\right)\)

c) Ta có:                      \(3n+7⋮n-1\)

\(\Rightarrow3\left(n-1\right)+10⋮n-1\)

\(\Rightarrow10⋮n-1\)

Vì \(10⋮n-1\Rightarrow n-1\inƯ\left(10\right)=\left(1;-1;2;-2;5;-5;10;-10\right)\)

Ta có bảng giá trị:

n-11-12-25-510-10
2203-16-411-9

Đối chiếu điều kiện \(n\inℤ\Rightarrow n\in\left(2;0;3;-1;6;-4;11;-9\right)\)

B)

a) Gọi d là ƯC (2n+1;2n+2) \(\left(d\inℤ\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+2⋮d\end{cases}}\)    \(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\)     \(\Rightarrow1⋮d\)

                                                                                                            \(\Rightarrow d=1\)

\(\Rightarrow\)2n+1 và 2n+2 nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{2n+2}\)là phân số tối giản

b) Gọi d là ƯC(2n+3;2n+5) \(\left(d\inℤ\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+5⋮d\end{cases}}\)        \(\Rightarrow\left(2n+5\right)-\left(2n+3\right)⋮d\) \(\Rightarrow2⋮d\) \(\Rightarrow d=\left(1;2\right)\)

Vì 2n+3 và 2n+5 không chia hết cho 2

\(\Rightarrow d=1\)

\(\Rightarrow\)2n+5 và 2n+3 nguyên tố cùng nhau

\(\Rightarrow\frac{2n+3}{2n+5}\)là phân số tối giản

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

19 tháng 4 2018

a) ta có:

\(\frac{n+1}{2n+3}\)là phân số tối giản thì:

\(\left(n+1;2n+3\right)=d\)

Điều Kiện;d thuộc N, d>0

=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)

=>2n+3-(2n+2):d

2n+3-2n-2:d

hay 1:d

=>d=1

Vỵ d=1 thì.....

19 tháng 4 2018

Bài 2 :

Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5

Mà n-5 chia hết cho n-5

=> (n+2) - (n-5) chia hết cho n-5

=> (n-n) + (2+5) chia hết cho n-5

=> 7 chia hết cho n-5

=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }

Ta có bảng giá trị

n-51-17-7
n6412-2
A8-620
KLTMĐKTMĐKTMĐKTMĐK

Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên

 

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

11 tháng 5 2018

a,\(\frac{2}{1.3}+...\frac{2}{99.101}\)

\(=\frac{3-1}{1.3}+...+\frac{101-99}{99.101}\)

\(=\frac{3}{1.3}-\frac{1}{1.3}+...+\frac{101}{99.101}-\frac{99}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}\)

\(\frac{100}{101}\)

11 tháng 5 2018

Mình cần gấp, ai trả lời nhanh nhất mình k cho

15 tháng 4 2017

1/

\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

n-31-12-24-4
n42517-1

Vậy...

15 tháng 4 2017

câu 2 dễ ẹt