K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

thiếu đề 

Tính:x+ x2 + x4 + .... x2n +x2n+2=??

18 tháng 8 2018

đề đã đủ

23 tháng 7 2019

a) Ta có: x2n \(\ge\)\(\forall\)x

      y2n \(\ge\)\(\forall\)y

=> x2n + y2n \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^{2n}=0\\y^{2n}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy x = y = 0

b) Ta có: (x - 2)2 \(\ge\)\(\forall\)x

        (y - 3)2 \(\ge\)\(\forall\)y

= (x - 2)2 + (y - 3)2 \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-3=0\end{cases}}\) => \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy x = 2 và y = 3 (tm)

23 tháng 7 2019

a) x2n + y2n = 0 ( thêm đk : n \(\in\)N)

Vì n\(\in\)N nên 2n chẵn

=> x2n \(\ge\)\(\forall\)x

     y2n  \(\ge\)\(\forall\)y

=> x2n + y2n = 0

<=> x2n = 0 và y2n = 0

=>  x2n  = 02n  và y2n = 02n

=> x = 0 và y = 0

b) (x-2)2 + (y-3)2  = 0

Có : \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\in N\\\left(y-3\right)^2\ge0\forall y\in N\end{cases}\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0}\)

Dấu "=" xảy ra <=>

(x-2)2 = 0                 và (y-3)2 = 0

Tự tính tìm đc x = 2 và y = 3

7 tháng 10 2019

\(a,3^n=3^4\)

\(\Rightarrow n=4\)

\(b,2008^n=2008^0\)

\(\Rightarrow n=0\)

9 tháng 2 2017

a) Chú ý: \(3012⋮3\Rightarrow3012^{95}⋮9\), nên hiển nhiên \(3012^{95}-1\) không chia hết cho 9

b/ \(5^{2n+1}.2^{n+2}+3^{n+2}.2^{2n+1}=20.5^{2n}.2^n+18.3^n.2^{2n}\)

chỉ cần CM \(5^{2n}.2^n-3^n.2^{2n}⋮19\)là xong

Có \(5^{2n}.2^n-3^n.2^{2n}=2^n\left(25^n-6^n\right)⋮\left(25-6\right)=19\)

10 tháng 2 2020

a.

(-2)4.17.(-3)0.(-5)6.(-12n)

=16.17.1.15625.-1

=(16.15625).[1.(-1)].17

=250000.(-1).17

=4250000

b.3(2x2-7)=33

      2x2-7 =33:3

      2x2-7 =11

      2x2    =11+7

      2x2    =18

        x2    =18:2

        x2    =9

        x2    =\(\left(\pm3^2\right)\) 

\(\Rightarrow\) TH1: x2    =32                     TH2: x2        =(-3)2

\(\Rightarrow\)          x      =3                      \(\Rightarrow\)x          =-3

Vậy x\(\in\left\{3;-3\right\}\)