Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/\(\sqrt{8-2\sqrt{15}}-\sqrt{21-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(2\sqrt{5}-1\right)^2}\)
Bạn tự làm tiếp
2/ \(\frac{4}{\sqrt{7-4\sqrt{3}}}-\frac{4}{7-4\sqrt{3}}=\frac{4}{\sqrt{\left(2-\sqrt{3}\right)^2}}-\frac{4}{\left(2-\sqrt{3}\right)^2}=\frac{4}{2-\sqrt{3}}-\frac{4}{\left(2-\sqrt{3}\right)^2}\)
\(=\frac{8-4\sqrt{3}-4}{\left(2-\sqrt{3}\right)^2}=\frac{4-4\sqrt{3}}{\left(2-\sqrt{3}\right)^2}\) đến đây ko rút gọn được nữa, nghi bạn chép sai đề.
Tử số của phân số thứ hai là 4 hay 1 vậy?
3/ \(\frac{\sqrt{8+2\sqrt{15}}-\sqrt{4-2\sqrt{3}}}{\sqrt{6-2\sqrt{5}}}=\frac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{3+\sqrt{5}}{2}\)
4/ \(\frac{10}{\sqrt{\left(\sqrt{5}-2\right)^2}}-\frac{12}{\sqrt{\left(3+\sqrt{5}\right)^2}}+\frac{20}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{10}{\sqrt{5}-2}-\frac{12}{3+\sqrt{5}}+\frac{20}{\sqrt{5}-1}\)
\(=\frac{10\left(\sqrt{5}+2\right)}{1}-\frac{12\left(3-\sqrt{5}\right)}{4}+\frac{20\left(\sqrt{5}+1\right)}{4}=16+18\sqrt{5}\)
\(\frac{10}{\sqrt{5}-2.\sqrt{5}.2+4}-\frac{12}{\sqrt{\sqrt{5}+2.\sqrt{5}.3+9}}+\frac{20}{\sqrt{5-2.\sqrt{5}.1+1}}=\frac{10}{\left(\sqrt{5}-2\right)^2}-\frac{12}{\sqrt{\left(\sqrt{5}+3\right)^2}}+\frac{20}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{10}{\sqrt{5}-2}-\frac{12}{\sqrt{5}+3}+\frac{20}{\sqrt{5}-1}=\frac{10\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right).\left(\sqrt{5}+2\right)}-\frac{12.\left(\sqrt{5}-3\right)}{\left(\sqrt{5}+3\right).\sqrt{5}-3\left(\right)}+\frac{20.\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\frac{10\sqrt{5}-20}{5-4}-\frac{12\sqrt{5}-36}{5-9}+\frac{20\sqrt{5}+20}{5-1}\\=\frac{40\sqrt{5}-80+12\sqrt{5}+36+20\sqrt{5}+20}{4}=\\ 18\sqrt{5}-6\)
1. Đặt A =\(\sqrt{\frac{129}{16}+\sqrt{2}}\)
\(\sqrt{16}\)A = \(\sqrt{129+16\sqrt{2}}\)
4A = \(\sqrt{\left(8\sqrt{2}+1\right)^2}\)
4A = \(8\sqrt{2}+1\)
⇒ A = \(\frac{\text{}8\sqrt{2}+1}{4}\)= \(2\sqrt{2}\) + \(\frac{1}{4}\)
2. Đặt B = \(\sqrt{\frac{289+4\sqrt{72}}{16}}\)
\(\sqrt{16}\)B = \(\sqrt{289+24\sqrt{2}}\)
4B = \(\sqrt{\left(12\sqrt{2}+1\right)^2}\)
4B = \(12\sqrt{2}+1\)
⇒ B = \(\frac{12\sqrt{2}+1}{4}\)= \(3\sqrt{2}+\frac{1}{4}\)
3. \(\sqrt{2-\sqrt{3}}\). \(\left(\sqrt{6}+\sqrt{2}\right)\)
= \(\sqrt{2-\sqrt{3}}\). \(\sqrt{2}.\left(\sqrt{3}+1\right)\)
= \(\sqrt{4-2\sqrt{3}}\) . \(\left(\sqrt{3}+1\right)\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}\) . \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}-1\right)\). \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}\right)^2\) - 12
= 3 - 1
= 2
4. \(\left(\sqrt{21}+7\right)\). \(\sqrt{10-2\sqrt{21}}\)
= \(\left(\sqrt{21}+7\right)\) . \(\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
= \(\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\) . \(\left(\sqrt{7}-\sqrt{3}\right)\)
= \(\sqrt{7}\) \(\left[\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2\right]\)
= \(\sqrt{7}\) . (7 - 3)
= 4\(\sqrt{7}\)
5. \(2.\left(\sqrt{10}-\sqrt{2}\right)\). \(\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{4+\sqrt{5}-1}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{3+\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{12+4\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\left(\sqrt{10}+\sqrt{2}\right)\)
= \(\left(\sqrt{10}\right)^2-\left(\sqrt{2}\right)^2\)
= 10 - 2
= 8
6. \(\left(4\sqrt{2}+\sqrt{30}\right)\). \(\left(\sqrt{5}-\sqrt{3}\right)\). \(\sqrt{4-\sqrt{15}}\)
= \(\sqrt{2}\)\(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{4-\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{8-2\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)^2\)
= \(\left(4+\sqrt{15}\right)\). \(\left(8-2\sqrt{15}\right)\)
= 32 - \(8\sqrt{15}\) + \(8\sqrt{15}\) - 30
= 2
7. \(\left(7-\sqrt{14}\right)\) . \(\sqrt{9-2\sqrt{14}}\)
= \(\sqrt{7}\) \(\left(\sqrt{7}-\sqrt{2}\right)\). \(\left(\sqrt{7}-\sqrt{2}\right)\)
= \(\sqrt{7}\). \(\left(\sqrt{7}-\sqrt{2}\right)^2\)
= \(\sqrt{7}\) . \(\left(9-2\sqrt{14}\right)\)
= 9\(\sqrt{7}\) - 14\(\sqrt{2}\)
TICK MÌNH NHA!
\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
\(A=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(A=\sqrt{5}-1-\sqrt{5}-1\)
\(A=-2\)
\(B=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(B=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(B=\sqrt{5}+2-\sqrt{5}+2\)
\(B=4\)
Sửa đề :
\(C=\sqrt{14-6\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
\(C=\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(3+\sqrt{5}\right)^2}\)
\(C=3-\sqrt{5}-3-\sqrt{5}\)
\(C=-2\sqrt{5}\)
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\frac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\frac{6+2\sqrt{5}}{4}=\frac{32-6-2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}=\frac{14-\sqrt{5}}{2}\) \(\left(\frac{9-2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2-\left(\frac{9+2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2=\left(\frac{9-2\sqrt{14}-9-2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)\left(\frac{9-2\sqrt{14}+9+2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)=\frac{-72\sqrt{14}}{\sqrt{7}-\sqrt{2}}\)
a) \(\sqrt{200}+2\sqrt{108}-\sqrt{98}+\frac{1}{3}\sqrt{\frac{81}{3}}-3\sqrt{75}\)
\(=10\sqrt{2}+12\sqrt{3}-7\sqrt{2}+\sqrt{3}-15\sqrt{3}\)
\(=3\sqrt{2}-2\sqrt{3}\)
b)\(\left(21\sqrt{\frac{1}{7}}+\frac{1}{2}\sqrt{112}-\frac{14}{3}\sqrt{\frac{9}{7}}+7\right):3\sqrt{7}\)
\(=\left(3\sqrt{7}+2\sqrt{7}-2\sqrt{7}+7\right):3\sqrt{7}\)
\(=\frac{\sqrt{7}\left(3+\sqrt{7}\right)}{3\sqrt{7}}=\frac{\sqrt{7}+3}{3}\)
c)\(\left(\sqrt{27}-\sqrt{125}+\sqrt{45}+\sqrt{12}\right)\left(\sqrt{75}+\sqrt{20}\right)\)
\(=\left(3\sqrt{3}-5\sqrt{5}+3\sqrt{5}+2\sqrt{3}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)
\(=\left(5\sqrt{3}-2\sqrt{5}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)
\(=75-20=55\)
d)\(\left(\frac{3}{\sqrt{6}-3}-\frac{3}{\sqrt{6}+3}\right).\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\frac{\sqrt{28-6\sqrt{3}}}{1}\)
\(=\frac{3\left(\sqrt{6}+3\right)-3\left(\sqrt{6}-3\right)}{-3}.\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\sqrt{\left(3\sqrt{3}-1\right)^2}\)
\(=\frac{-6\left(3-\sqrt{3}\right)}{2-2\sqrt{3}}-\left(3\sqrt{3}-1\right)\left(do3\sqrt{3}>1\right)\)
\(=\frac{6\sqrt{3}-18}{2-2\sqrt{3}}-\frac{8\sqrt{3}-20}{2-2\sqrt{3}}\)
\(=\frac{6\sqrt{3}-18-8\sqrt{3}+20}{2-2\sqrt{3}}=\frac{2-2\sqrt{3}}{2-2\sqrt{3}}=1\)
1, \(=\frac{4\sqrt{2}\left(2-\sqrt{2}\right)}{2^2-\sqrt{2}^2}-\frac{4\sqrt{2}\left(2+\sqrt{2}\right)}{2^2-\sqrt{2}^2}\)
=\(\frac{4\sqrt{2}\left(2-\sqrt{2}\right)}{2}-\frac{4\sqrt{2}\left(2+\sqrt{2}\right)}{2}\)
=\(2\sqrt{2}\left(2-\sqrt{2}\right)-2\sqrt{2}\left(2+\sqrt{2}\right)\)
=\(4\sqrt{2}-4-4\sqrt{2}-4\)
=-8
2, =\(\sqrt{2}+\sqrt{2}-2.3\sqrt{2}+\left|1-\sqrt{2}\right|\)
= \(-4\sqrt{2}+1-\sqrt{2}\) = \(1-5\sqrt{2}\)
3, =\(9\sqrt{\frac{2.2}{3.2}}+5\sqrt{9.6}-\sqrt{\frac{1}{6}}\)
=\(3\sqrt{6}+15\sqrt{6}-\frac{1}{6}\sqrt{6}\)
=\(\frac{107}{6}\sqrt{6}\)
4, =\(\sqrt{\left(4+2\sqrt{2}\right)\left(4-2\sqrt{2}\right)}.\left(2\sqrt{2}-\sqrt{2}\right)\)
= \(\sqrt{4^2-\left(2\sqrt{2}\right)^2}.\sqrt{2}\)
= \(\sqrt{16-8}.\sqrt{2}\)
= \(\sqrt{8}.\sqrt{2}=\sqrt{16}=4\)
5, = \(\sqrt{9-2.3.\sqrt{5}+5}+\sqrt{1-2.1.\sqrt{2}+2}+\sqrt{5-2.\sqrt{2}.\sqrt{5}+2}\)
\(=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{(1-\sqrt{2})^2}+\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)\(=\left|3-\sqrt{5}\right|+\left|1-\sqrt{2}\right|+\left|\sqrt{5}-\sqrt{2}\right|\)
\(=3-\sqrt{5}+1-\sqrt{2}+\sqrt{5}-\sqrt{2}\)
\(=4-2\sqrt{2}\)
\(\sqrt{\frac{9}{\sqrt{14+4\sqrt{6}}}}-\sqrt{\frac{9}{\sqrt{14-4\sqrt{6}}}}\)
\(=\sqrt{\frac{9}{\sqrt{\left(\sqrt{12}\right)^2+2\cdot\sqrt{12}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}}}-\sqrt{\frac{9}{\sqrt{\left(\sqrt{12}\right)^2-2\cdot\sqrt{12}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}}}\)
\(=\sqrt{\frac{9}{\sqrt{12}+\sqrt{2}}}-\sqrt{\frac{9}{\sqrt{12}-\sqrt{2}}}\)
\(=\frac{3}{\sqrt{\sqrt{12}+\sqrt{2}}}-\frac{3}{\sqrt{\sqrt{12}-\sqrt{2}}}=\frac{3\left(\sqrt{\sqrt{12}-\sqrt{2}}\right)-3\left(\sqrt{\sqrt{12}+\sqrt{2}}\right)}{\left(\sqrt{\sqrt{12}+\sqrt{2}}\right)\left(\sqrt{\sqrt{12}-\sqrt{2}}\right)}\)
\(=\frac{3\sqrt{\sqrt{12}-\sqrt{2}}-3\sqrt{\sqrt{12}+\sqrt{2}}}{\left(\sqrt{\sqrt{12}+\sqrt{2}}\right)\left(\sqrt{\sqrt{12}-\sqrt{2}}\right)}\)
\(=\frac{3\sqrt{\sqrt{12}-\sqrt{2}}-3\sqrt{\sqrt{12}+\sqrt{2}}}{\sqrt{12-2}}\)
\(=\frac{3\sqrt{\sqrt{12}-\sqrt{2}}-3\sqrt{\sqrt{12}+\sqrt{2}}}{\sqrt{10}}\)
\(=\frac{3\left(\sqrt{2\sqrt{3}-\sqrt{2}}-\sqrt{2\sqrt{3}+\sqrt{2}}\right)}{\sqrt{10}}\)
\(=\frac{3}{\sqrt{10}}\)
\(\sqrt{\frac{9}{\sqrt{14+4\sqrt{6}}}}-\sqrt{\frac{9}{\sqrt{14-4\sqrt{6}}}}\)
\(=\sqrt{\frac{9}{\sqrt{\left(\sqrt{12}\right)^2+2\cdot\sqrt{12}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}}}-\sqrt{\frac{9}{\sqrt{\left(\sqrt{12}\right)^2-2\cdot\sqrt{12}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}}}\)
\(=\sqrt{\frac{9}{\sqrt{12}+\sqrt{2}}}-\sqrt{\frac{9}{\sqrt{12}-\sqrt{2}}}\)
\(=\frac{3}{\sqrt{\sqrt{12}+\sqrt{2}}}-\frac{3}{\sqrt{\sqrt{12}-\sqrt{2}}}=\frac{3\left(\sqrt{\sqrt{12}-\sqrt{2}}\right)-3\left(\sqrt{\sqrt{12}+\sqrt{2}}\right)}{\left(\sqrt{\sqrt{12}+\sqrt{2}}\right)\left(\sqrt{\sqrt{12}-\sqrt{2}}\right)}\)
\(=\frac{3\sqrt{\sqrt{12}-\sqrt{2}}-3\sqrt{\sqrt{12}+\sqrt{2}}}{\left(\sqrt{\sqrt{12}+\sqrt{2}}\right)\left(\sqrt{\sqrt{12}-\sqrt{2}}\right)}\)
\(=\frac{3\sqrt{\sqrt{12}-\sqrt{2}}-3\sqrt{\sqrt{12}+\sqrt{2}}}{\sqrt{12-2}}\)\(=\frac{3\sqrt{\sqrt{12}-\sqrt{2}}-3\sqrt{\sqrt{12}+\sqrt{2}}}{\sqrt{10}}\)
\(=\frac{3\left(\sqrt{2\sqrt{3}-\sqrt{2}}-\sqrt{2\sqrt{3}+\sqrt{2}}\right)}{\sqrt{10}}\)
bí....!!!