K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

B = 2 - 4 - 6 + 8 + 10 - 12 -14 + 16 + ...+ 2010 - 2012 - 2014 + 2016

   = (2 - 4 - 6 + 8 ) + ( 10 - 12 -14 +16 ) + ...+ ( 2010 - 2012 - 2014 + 2016 )

   = 0 + 0 +...+ 0 + 0 (có 252 số hạng 0)

    = 0

22 tháng 3 2019

Ta có:  Từ 2 đến 2016 có \(\frac{2016-2}{2}+1=1008\)

B=(2-4)-(6-8)+(10-12)-(14-16)+...+(2010-2012)-(2014-2016)  như vậy có 1008:2=504 nhóm

=-2+2-2+2+...-2+2 có 504 số hạng trong đó có: 525 số -2 và 525 số +2

=0

9 tháng 2 2018

Đặt tổng trên = A

Có : A = 1/1.2.3 + 1/2.3.4 + ...... + 1/9.10.11

2A = 2/1.2.3 + 2/2.3.4 + ...... + 2/9.10.11

     = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ....... + 1/9.10 - 1/10.11

     = 1/1.2 - 1/10.11

     = 1/2 - 1/110 = 27/55

=> A = 27/55 : 2 = 27/110

Tk mk nha

\(N=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\)

=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\right)\)

=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{10}{33}\)

9 tháng 4 2019

\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4970}\)

\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{70.71}\)

\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{70}-\frac{1}{71}\)

\(M=1-\frac{1}{71}\)

\(M=\frac{70}{71}\)

\(N=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(N=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)

\(N=\frac{1}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\right)\)

\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)

\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(N=\frac{1}{3}.\frac{10}{33}\)

\(N=\frac{10}{99}\)

12 tháng 3 2020

\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{18\cdot19\cdot20}\)

\(A=\frac{1}{2}\cdot\frac{2}{1\cdot2\cdot3}+\frac{1}{2}\cdot\frac{2}{2\cdot3\cdot4}+\frac{1}{2}\cdot\frac{2}{3\cdot4\cdot5}+...+\frac{1}{2}\cdot\frac{2}{18\cdot19\cdot20}\)

\(A=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{18\cdot19\cdot20}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2.3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{2}-0-0-...-0-\frac{1}{380}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)

\(A=\frac{1}{2}\cdot\frac{189}{380}\)

\(A=\frac{189}{760}\)

\(A=\left(\frac{-2}{3}+1\frac{1}{4}-\frac{1}{6}\right).\frac{-12}{5}\)

=\(\left(\frac{-8+15-2}{12}\right).\frac{-12}{5}\)\(=\frac{5}{12}.\frac{-12}{5}=-1\)

15 tháng 7 2015

Làm lại câu a

\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

\(2S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(2S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(2S=1-\frac{1}{100}\)suy ra \(2S=\frac{99}{100}\)

\(S=\frac{99}{100}:2\)suy ra \(S=\frac{99}{200}\)

15 tháng 7 2015

a, 2S=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

\(2S=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)

\(2S=1-\frac{1}{100}\)suy ra \(2S=\frac{99}{100}\)

\(S=\frac{99}{100}:2=\frac{99}{200}\)

22 tháng 4 2018

chịu nha

21 tháng 5 2018

trương anh quân: chịu thì đừng mà trả lời. đúng là ngu bò

17 tháng 4 2017

A=.....

=\(7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+....+\frac{1}{69.70}\right)=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+.....+\frac{1}{69}-\frac{1}{70}\right)\)

=\(7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)

MẤY PHẦN SAU CX TÁCH MẪU RA RÙI LÀM NHƯ VẬY

TỰ LÀM NHE

9 tháng 8 2018

\(B=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+...+\frac{1}{30\cdot33}\)

\(B=\frac{1}{3}\cdot\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+...+\frac{3}{30\cdot33}\right)\)

\(B=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\right)\)

\(B=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(B=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)

\(C=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)

\(C=\left(1-\frac{1}{1\cdot2}\right)+\left(1-\frac{1}{2\cdot3}\right)+...+\left(1-\frac{1}{9\cdot10}\right)\)

\(C=9-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\right)\)

\(C=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(C=9-\left(1-\frac{1}{10}\right)\)

\(C=9-\frac{9}{10}=\frac{81}{10}\)