\(A=\frac{3^3+1^3}{2^3-1^3}+\frac{5^3+2^3}{3^3-2^3}+..............+\frac{4013^3+2006...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Xét : \(\frac{\left(2n+1\right)^3+n^3}{\left(n+1\right)^3-n^3}=\frac{\left(3n+1\right)\left(4n^2+4n+1+n^2-2n^2-n\right)}{\left(n+1-n\right)\left(n^2+2n+1+n^2-n^2-n\right)}\)

\(=\frac{\left(3n+1\right)\left(3n^2+3n+1\right)}{3n^2+3n+1}=3n+1\)với \(n\in N,n\ge1\)

Áp dụng : \(A=\frac{\left(2.1+1\right)^3+1^3}{\left(1+1\right)^3-1^3}+\frac{\left(2.2+1\right)^3+2^3}{\left(2+1\right)^3-2^3}+...+\frac{\left(2.2006+1\right)^3+2006^3}{\left(2006+1\right)^3-2006^3}\)

\(=\left(3.1+1\right)+\left(3.2+1\right)+...+\left(3.2006+1\right)\)

\(=3\left(1+2+...+2006\right)+2006\)

\(=3.\frac{2006.2007}{2}+2006\)

Tới đây bạn tự tính nhé :)

8 tháng 8 2016

bài này khó quá bạn à

30 tháng 7 2018

Giải:

1) \(7^8.\left(-\dfrac{1}{7}\right)^8\)

\(=7^8.\left(\dfrac{1}{7}\right)^8\)

\(=7^8.\dfrac{1^8}{7^8}\)

\(=1\)

2) \(\left(\dfrac{4}{3}\right)^{10}.\left(-\dfrac{3}{4}\right)^{10}\)

\(=\left(\dfrac{4}{3}\right)^{10}.\left(\dfrac{3}{4}\right)^{10}\)

\(=\dfrac{4^{10}}{3^{10}}.\dfrac{3^{10}}{4^{10}}\)

\(=1\)

3) \(\left(-\dfrac{7}{2}\right)^{2006}.\left(-\dfrac{2}{7}\right)^{2006}\)

\(=\left(\dfrac{7}{2}\right)^{2006}.\left(\dfrac{2}{7}\right)^{2006}\)

\(=1\)

4) \(\left(-\dfrac{5}{13}\right)^{2007}.\left(\dfrac{13}{5}\right)^{2006}\)

\(=\left(\dfrac{5}{13}\right)^{2007}.\left(\dfrac{13}{5}\right)^{2006}\)

\(=\dfrac{5^{2007}.13^{2006}}{13^{2007}.5^{2006}}\)

\(=\dfrac{5}{13}\)

Vậy ...

30 tháng 7 2018

@Hắc Hường dạo này lên hình lại rồi ak:))

6 tháng 1 2017

A:B=1:2

6 tháng 1 2017

a:b=1:4

k nhé

28 tháng 2 2020

Bài 1:

a) Sửa lại là: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\) nhé.

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)

\(=3^n.\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)

\(=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\)

\(10⋮10\) nên \(10.\left(3^n-2^{n-1}\right)⋮10.\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\left(\forall n\in N^X\right).\)

Chúc bạn học tốt!

12 tháng 6 2018

1. a) \(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{1}{2}+\frac{1}{3}=\frac{9}{12}+\frac{6}{12}+\frac{4}{12}=\frac{19}{12}\)

   b) \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}\)

\(=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}\)

\(=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}\)

\(=5+1+0,5=6,5\)

2) a) 1/2 + 2/3x = 1/4

=> 2/3x            = 1/4 - 1/2

=> 2/3x            = -1/4

=> x                = -1/4 : 2/3

=> x                = -3/8

b) 3/5 + 2/5 : x = 3 1/2

=> 3/5 + 2/5 : x = 7/2

=>         2/5 : x  = 7/2 - 3/5

=>         2/5 : x  = 29/10

=>               x    = 2/5 : 29/10

=>               x    = 4/29

c) x+4/2004 + x+3/2005 = x+2/2006 + x+1/2007

=> x+4/2004 + 1 + x+3/2005 + 1 = x+2/2006 + 1 + x+1/2007 + 1

=>   x+2008/2004 + x+2008/2005 = x+2008/2006 + x+2008/2007

=>  x+2008/2004 + x+2008/2005 - x+2008/2006 - x+2008/2007 = 0

=> (x+2008). (1/2004 + 1/2005 - 1/2006 - 1/2007) = 0

Vì 1/2004 + 1/2005 - 1/2006 - 1/2007 khác 0

Nên x + 2008 = 0 <=> x = -2008

Vậy x = -2008

12 tháng 6 2018

1,a,\(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{2}{4}+\frac{1}{3}=\frac{5}{4}+\frac{1}{3}=\frac{15}{12}+\frac{4}{12}=\frac{19}{12}\)

  b, \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}=5+1+\frac{1}{2}=\frac{13}{2}\)2,a,\(\frac{1}{2}+\frac{2}{3}.x=\frac{1}{4}\)

    <=>\(\frac{2}{3}.x=-\frac{1}{2}\)

   <=>\(x=-\frac{3}{4}\)

b,\(\frac{3}{5}+\frac{2}{5}\div x=3\frac{1}{2}\)

 <=>\(\frac{2}{5x}=\frac{29}{10}\)

 <=>\(x=\frac{29}{4}\)

c,\(\frac{x+4}{2004}+\frac{x+3}{2005}=\frac{x+2}{2006}+\frac{x+1}{2007}\)

<=> \(\frac{x+4}{2004}+1+\frac{x+3}{2005}+1=\frac{x+2}{2006}+1+\frac{x+1}{2007}+1\)

<=>\(\frac{x+2008}{2004}+\frac{x+2008}{2005}=\frac{x+2008}{2006}+\frac{x+2008}{2007}\)

<=>\(\left(x+2008\right)\left(\frac{1}{2004}+\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}\right)\)=0

<=>x+2008=0 vì cái ngoặc còn lại\(\ne0\)

<=>x=-2008

 Vậy x=-2008

Bạn nhớ tk cho mình vì mình đã chăm chỉ làm hết bài bạn hỏi nha!

7 tháng 10 2016

Biết nhưng ko trả lời

 

 

26 tháng 3 2017

ki bo quá nhỉ bạn ấy bỏ rùi hiha

12 tháng 2 2018

Ta có :

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(B=1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)\)

\(B=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(B=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)

Vậy \(\frac{A}{B}=\frac{1}{2009}\)

12 tháng 2 2018

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{1007}+\frac{1}{2008}\)

\(B=\frac{2008}{1}+1+\frac{2007}{2}+1+\frac{2006}{3}+1+....+\frac{2}{2007}+1+\frac{1}{2008}+1-2008\)

\(B=\frac{2009}{1}+\frac{2009}{2}+\frac{2009}{3}+.....+\frac{2009}{2007}+\frac{2009}{2008}-\frac{2009.2008}{2009}\)

\(B=2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{2008}-\frac{2008}{2009}\right)\)

Từ đó suy ra \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{1008}+\frac{2008}{2009}\right)}\)

\(=\frac{\frac{1}{2009}}{2009\cdot\left(1+\frac{2008}{2009}\right)}\)

Bí òi

7 tháng 10 2016

Ta có: \(\frac{2^{2008}-3}{2^{2007}-1}=\frac{\left(2^{2008}-2\right)-1}{2^{2007}-1}=\frac{2\left(2^{2007}-1\right)-1}{2^{2007}-1}=2-\frac{1}{2^{2007}-1}\)

CMTT ta có \(\frac{2^{2007}-3}{2^{2006}-1}=2-\frac{1}{2^{2006}-1}\)

MÀ 22006-1<22007-1 => \(\frac{1}{2^{2006}-1}>\frac{1}{2^{2007}-1}\Rightarrow2-\frac{1}{2^{2006}-1}< 2-\frac{1}{2^{2007}-1}\)

Từ đó \(\Rightarrow\frac{2^{2008}-3}{2^{2007}-1}>\frac{2^{2007}-3}{2^{2006}-1}\)