Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)\(=\sqrt{6+2.1,4.\sqrt{3-\sqrt{1,4+2.1,7+\sqrt{18-8.1,4\text{}}}}}-1,7\)
\(=\sqrt{6+2,8\sqrt{3-\sqrt{1,4+3,4+\sqrt{18-11,2}}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+\sqrt{6,8}}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+2,6}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{7,4}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-2,7}}-1,7\)
\(=\sqrt{88\sqrt{0,3}}-1,7\)
\(=\sqrt{88.0,54}-1,7\)
\(=\sqrt{47,52}-1,7\)
\(=6,9-1,7\)
\(=5,2\)
2,Mệt với câu 1 rồi nên câu 2 và câu 3 chịu
hình như sai rồi bạn ơi, lúc học thì thầy mình giải ra kết quả =1 và ko tính căn ra như thế
ĐKXĐ: \(x>0\)
\(S=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\div\left(\frac{\sqrt{x}}{x+\sqrt{x}}\right)=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\right)\)
\(=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\left(\sqrt{x}+1\right)=\frac{\sqrt{x}+1}{\sqrt{x}}+\sqrt{x}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có :
\(A=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{x-1}:\frac{1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+1}\)
\(=1\)
Vậy...
b/ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có :
\(B=\left(\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}+6\right)\left(\frac{x\sqrt{x}-1}{x+\sqrt{x}+1}-3\right)\)
\(=\left(\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-2}+6\right)\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-3\right)\)
\(=\left(\sqrt{x}-2+6\right)\left(\sqrt{x}-1-3\right)\)
\(=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)\)
\(=x-16\)
Vậy..
c/ ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Ta có :
\(C=\frac{2\sqrt{x}}{x-1}+\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}-x}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x+\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{2}{\sqrt{x}}\)
Vậy..
mình sẽ xóa câu này mong bạn gửi lại câu hỏi khác để rõ ràng cho các bạn khác tham khảo nha
Bài 1: Sửa đề: \(B=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Thay x=49 vào biểu thức \(A=\frac{\sqrt{x}+3}{\sqrt{x}-1}\), ta được:
\(A=\frac{\sqrt{49}+3}{\sqrt{49}-1}=\frac{7+3}{7-1}=\frac{10}{6}=\frac{5}{3}\)
Vậy: Khi x=49 thì \(A=\frac{5}{3}\)
b) Sửa đề: Rút gọn biểu thức B
Ta có: \(B=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\cdot\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)
c) Ta có: \(\frac{B}{A}=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\cdot\frac{\sqrt{x}-1}{\sqrt{x}+3}\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
Để \(\frac{B}{A}< \frac{3}{4}\) thì \(\frac{x-1}{\sqrt{x}\left(\sqrt{x}+3\right)}-\frac{3}{4}< 0\)
\(\Leftrightarrow\frac{4\left(x-1\right)-3\sqrt{x}\left(\sqrt{x}+3\right)}{4\sqrt{x}\left(\sqrt{x}+3\right)}< 0\)
mà \(4\sqrt{x}\left(\sqrt{x}+3\right)>0\forall x\) thỏa mãn ĐKXĐ
nên \(4\left(x-1\right)-3\sqrt{x}\left(\sqrt{x}+3\right)< 0\)
\(\Leftrightarrow4x-4-3x-9\sqrt{x}< 0\)
\(\Leftrightarrow x-9\sqrt{x}-4< 0\)
\(\Leftrightarrow x^2-9x-4< 0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{9}{2}+\frac{81}{4}-\frac{97}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{9}{2}\right)^2< \frac{97}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{9}{2}>-\frac{\sqrt{97}}{2}\\x-\frac{9}{2}< \frac{\sqrt{97}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\frac{9-\sqrt{97}}{2}\\x< \frac{9+\sqrt{97}}{2}\end{matrix}\right.\)
Kết hợp ĐKXĐ, ta được:
\(3< x< \frac{9+\sqrt{97}}{2}\)
Ta phải có m , n > 0 để m/n > 0 và n/m > 0 ta được:
\(\sqrt{x^2-4}=\sqrt{\frac{\left(m-n\right)^2}{mn}}=\frac{|m-n|}{\sqrt{mn}}\)
\(A=\frac{2n.\frac{|m-n|}{\sqrt{mn}}}{\left(\sqrt{\frac{m}{n}}+\sqrt{\frac{n}{m}}\right)-\frac{|m-n|}{\sqrt{mn}}}\)
\(=\frac{2n|m-n|}{\sqrt{mn}\left(\sqrt{\frac{m}{n}}+\sqrt{\frac{n}{m}}\right)-|m-n|}\)
\(=\frac{2n|m-n|}{\left(\sqrt{m^2}+\sqrt{n^2}\right)-|m-n|}\)
Đến đây ta xét hai trường hợp:
+ TH1: m > 0 và n > 0
Khi đó \(\sqrt{m^2}+\sqrt{n^2}=m+n\)
và \(A=\frac{2n.|m-n|}{m+n-|m-n|}\)
Nếu \(m\ge n>0\Rightarrow|m-n|=n-m\) do đó: A = m - n
Nếu \(0< m< n\Rightarrow|m-n|=n-m\) do đó\(A=\frac{n\left(n-m\right)}{m}\)
Còn TH2: m < 0 ; n < 0 bạn tự giải nốt:vv
Bé Mon: Giải hết luôn trường hợp 2 cho mình đi