Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm câu c cho nó dễ
c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010
=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010
=1-1/x+1=2009/2010
=1/x+1=1-2009/2010
=1/x+1=1/2010
=) x+1=2010
x =2010-1
x =2009
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
a ) \(\frac{4}{20}+\frac{16}{42}+\frac{6}{15}+\frac{-3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)
\(=\frac{4}{20}+\frac{8}{21}+\frac{2}{5}-\frac{3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)
\(=\left(\frac{4}{20}+\frac{3}{20}\right)+\left(\frac{8}{21}+\frac{2}{21}-\frac{10}{21}\right)+\left(\frac{2}{5}-\frac{3}{5}\right)\)
\(=\frac{7}{20}+0+\frac{-1}{5}=\frac{7-4}{20}=\frac{3}{20}\)
b ) \(\frac{42}{46}+\frac{250}{186}+\frac{-2121}{2323}+\frac{-125125}{143143}\)
\(=\frac{21}{23}+\frac{-21}{23}+\frac{-125}{143}\)
\(=0+\frac{-125}{143}=-\frac{125}{143}\)
bài 2
a \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2003.2004}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)
=\(1-\frac{1}{2004}=\frac{2003}{2004}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)
\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(B=1-\frac{1}{101}=\frac{100}{101}\)
\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)
\(C=3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)
\(C=3\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\right)\)
\(C=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(C=3\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{27}{20}\)
\(D=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)
\(D=\frac{7}{2}B=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)
a) = 1-1/2+1/2-1/3+1/3-1/4
= 1-1/4=3/4
b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018
=1-1/2018=2017/2018
c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015
= 1/2-1/2015=2015/4030-2/4030=2013/4030
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)
b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)
\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)
\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}.\frac{2013}{4030}\)
\(=\frac{6039}{8060}\)
A = \(\frac{5}{1.2}\) + \(\frac{5}{2.3}\) +........+\(\frac{5}{99.100}\)
A = 5.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +......+\(\frac{1}{99.100}\) )
A = 5. ( \(\frac{1}{1}\) - \(\frac{1}{2}\) +\(\frac{1}{2}-\frac{1}{3}\) +......+\(\frac{1}{99}-\frac{1}{100}\) )
A= 5. (\(1-\frac{1}{100}\))
A= 5.\(\frac{99}{100}\)
A= \(\frac{99}{20}\)
B = \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+............+ \(\frac{1}{9.10}\)
= \(\frac{1}{2}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)- \(\frac{1}{4}\)+ ...................+\(\frac{1}{9}\)- \(\frac{1}{10}\)
= \(\frac{1}{2}\) - \(\frac{1}{10}\)
= \(\frac{2}{5}\)
đề sai thì phải
\(A=\frac{10}{2\cdot12}+\frac{2}{3\cdot5}+\frac{3}{5\cdot8}+\frac{1}{2\cdot3}+\frac{5}{12\cdot17}+\frac{6}{17\cdot23}+\frac{7}{23\cdot30}\)
\(A=\frac{1}{2}-\frac{1}{12}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{2}-\frac{1}{3}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\)
\(A=\frac{1}{2}+\frac{1}{2}-\frac{1}{8}-\frac{1}{30}\)
\(A=\frac{101}{120}\)
\(A=\frac{1}{2.12}+\frac{2}{3.5}+\frac{3}{5.8}+...+\frac{7}{23.30}\)
\(=\frac{1}{2}-\frac{1}{12}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{8}-\frac{1}{30}=1-\frac{19}{120}=\frac{101}{120}\)