Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^5.7+2^5}{2^5.5^2-2^5.3}=\frac{2^5.\left(7+1\right)}{2^5.\left(5^2-3\right)}=\frac{8}{22}\)
\(\frac{2^5.7+2^5}{2^5.5^2-2^5.3}\)
\(\frac{2^5.\left(7+1\right)}{2^5.\left(5^2-3\right)}\)=\(\frac{8}{22}=\frac{4}{11}\)
Hok tốt
Theo đầu bài ta có:
\(\frac{3}{5\cdot2!}+\frac{3}{5\cdot3!}+\frac{3}{5\cdot4!}+...+\frac{3}{5.100!}< 0,6\)
\(\Rightarrow\frac{3}{5}\cdot\frac{1}{2!}+\frac{3}{5}\cdot\frac{1}{3!}+\frac{3}{5}\cdot\frac{1}{4!}+...+\frac{3}{5}\cdot\frac{1}{100!}< \frac{3}{5}\)
\(\Rightarrow\frac{3}{5}\cdot\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)< \frac{3}{5}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< 1\)( điều cần chứng minh )
Mà \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< 1-\frac{1}{100}< 1\)( đã chứng minh được )
Vậy \(\frac{3}{5\cdot2!}+\frac{3}{5\cdot3!}+\frac{3}{5\cdot4!}+...+\frac{3}{5\cdot100!}< 0,6\)( đpcm )
\(A=\frac{2^3.3^5.6^2}{2^5.3^7}=\frac{2^3.3^5.2^2.3^2}{2^5.3^7}=\frac{2^5.3^7}{2^5.3^7}=1\)
Ta có:
\(\frac{3}{5.2!}+\frac{3}{5.3!}+\frac{3}{5.4!}+...+\frac{3}{5.100!}\)
\(=\frac{3}{5}.\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)
\(< \frac{3}{5}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=\frac{3}{5}.\left(1-\frac{1}{100}\right)\)
\(< \frac{3}{5}.1=\frac{3}{5}=0,6\)
1;Ta có\(5.3^x=5.3^4\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
2.Ta có \(9.5^x=6.5^6+3.5^6\)
\(\Rightarrow9.5^x=5^6.\left(6+3\right)\)
\(\Rightarrow9.5^x=9.5^6\)
\(\Rightarrow5^x=5^6\)\
\(\Rightarrow x=6\)
3, Ta có \(2.3^{x+2}+4.3^{x+1}=10.3^6\)
\(\Rightarrow3^{x+1}.\left(2.3+4\right)=10.3^6\)
\(\Rightarrow3^{x+1}.10=10.3^6\)
\(\Rightarrow3^{x+1}=3^6\)
\(\Rightarrow x+1=6\)
\(\Rightarrow x=5\)
a) 5.3x = 5.34
=> 3x=34
=> x=4
b) 9.5x=6.56+3.56
=> 9.5x = (6+3)56
=> 9.5x=9.56
=> 5x=56
=> x=6
c) 2.3x+2 + 4.3x+1 = 10.36
=> 2.3x+1.3 + 4.3x+1 = 10.36
=> 6.3x+1+4.3x+1=10.36
=> (6+4).3x+1=10.36
=> 10.3x+1=10.36
=> 3x+1=36
=> x+1=6
=> x=5