K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

HẾ lu van buồi

23 tháng 2 2020

vân buồi ơi kết bạn ko

1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)

3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)

\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)

\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)

20 tháng 8 2019

a) \(\frac{2}{4-3\sqrt{2}}-\frac{2}{4+3\sqrt{2}}\)

\(=\frac{2\left(4+3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}-\frac{2\left(4-3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}\)

\(=\frac{2\left(4+3\sqrt{2}\right)-2\left(4-3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}\)

\(=\frac{12\sqrt{2}}{-2}\)

\(=-6\sqrt{2}\)

b) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)

\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}-\frac{\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)

\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2-\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)

\(=\frac{4\sqrt{35}}{2}\)

\(=2\sqrt{35}\)

16 tháng 7 2016

a/ Bạn ghi nhầm đề rồi

c/ \(2\sqrt{18\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5\sqrt{48}}\)   

     \(=2\sqrt{18}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{\sqrt{48}}\)

       \(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{4\sqrt{3}}\)

       \(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-6\sqrt{5}.\sqrt{\sqrt{3}}\)

        \(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-\sqrt{5}-3\sqrt{5}\right)\)

         \(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-4\sqrt{5}\right)\)\(=2\sqrt{2\sqrt{3}}\left(3-2\sqrt{10}\right)\)

f/ \(\sqrt{2}.\sqrt{2+\sqrt{3}}-2\left(\sqrt{3}-1\right)=\sqrt{4+2\sqrt{3}}-2\left(\sqrt{3}-1\right)\)

    \(=\sqrt{\left(\sqrt{3}+1\right)^2}-2\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)\)

      \(=\sqrt{3}+1-2\sqrt{3}+2=3-\sqrt{3}=\sqrt{3}\left(\sqrt{3}-1\right)\)

g/ \(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-2\sqrt{3}+2007\)

   \(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-2\sqrt{3}+2007\)

     \(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+2007\)

       \(=2007\)

31 tháng 8 2019

\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\frac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\frac{6+2\sqrt{5}}{4}=\frac{32-6-2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}=\frac{14-\sqrt{5}}{2}\) \(\left(\frac{9-2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2-\left(\frac{9+2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2=\left(\frac{9-2\sqrt{14}-9-2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)\left(\frac{9-2\sqrt{14}+9+2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)=\frac{-72\sqrt{14}}{\sqrt{7}-\sqrt{2}}\)

6 tháng 8 2019

a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)

       = \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)

       = \(\frac{-2\sqrt{6}}{2}\)

       = \(-\sqrt{6}\)

3 tháng 11 2019

a) \(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=2\sqrt{3}+2-\sqrt{3}\)

\(=\left(2\sqrt{3}-\sqrt{3}\right)+2\)

\(=\sqrt{3}+2\)

b) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)

\(=\frac{1+\sqrt{5}}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{1+\sqrt{5}}\)

\(=\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}\)

\(=\frac{\left(\sqrt{5}+1\right)^2+\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}\)

\(=\frac{12}{4}=3\)

c) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)

\(=\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+\frac{7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\frac{14}{1}=14\)

30 tháng 10 2020

a) Ta có: \(\frac{7\sqrt{2}+2\sqrt{7}}{\sqrt{14}}-\frac{5}{\sqrt{7}+\sqrt{5}}\)

\(=\frac{\sqrt{14}\left(\sqrt{7}+\sqrt{2}\right)}{\sqrt{14}}-\frac{5\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)

\(=\frac{2\left(\sqrt{7}+\sqrt{2}\right)-5\left(\sqrt{7}-\sqrt{5}\right)}{2}\)

\(=\frac{2\sqrt{7}+2\sqrt{2}-5\sqrt{7}+5\sqrt{5}}{2}\)

\(=\frac{2\sqrt{2}-3\sqrt{7}+5\sqrt{5}}{2}\)

b) Ta có: \(\frac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

\(=\frac{\sqrt{2}\left(6+2\sqrt{5}\right)}{4\sqrt{2}+\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}}+\frac{\sqrt{2}\left(6-2\sqrt{5}\right)}{4\sqrt{2}-\sqrt{2}\cdot\sqrt{6-2\sqrt{5}}}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\cdot\sqrt{\left(\sqrt{5}+1\right)^2}}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\cdot\left|\sqrt{5}+1\right|}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\left|\sqrt{5}-1\right|}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\left(\sqrt{5}+1\right)}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\left(\sqrt{5}-1\right)}\)(Vì \(\sqrt{5}>1>0\))

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{10}+\sqrt{2}}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{10}+\sqrt{2}}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{5\sqrt{2}+\sqrt{10}}+\frac{6\sqrt{2}-2\sqrt{10}}{5\sqrt{2}-\sqrt{10}}\)

\(=\frac{6+2\sqrt{5}}{5+\sqrt{5}}+\frac{6-2\sqrt{5}}{5-\sqrt{5}}\)

\(=\frac{\left(\sqrt{5}+1\right)^2}{\sqrt{5}\left(\sqrt{5}+1\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}\left(\sqrt{5}-1\right)}\)

\(=\frac{\sqrt{5}+1+\sqrt{5}-1}{\sqrt{5}}\)

\(=\frac{2\sqrt{5}}{\sqrt{5}}=2\)

c) Đặt \(A=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)

Ta có: \(A=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)

\(\Leftrightarrow A^3=32-12\cdot\left(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\right)\)

\(=32-12A\)

\(\Leftrightarrow A^3+12A-32=0\)

\(\Leftrightarrow A^3-2A^2+2A^2-4A+16A-32=0\)

\(\Leftrightarrow A^2\left(A-2\right)+2A\left(A-2\right)+16\left(A-2\right)=0\)

\(\Leftrightarrow\left(A-2\right)\left(A^2+2A+16\right)=0\)

\(A^2+2A+16>0\)

nên A-2=0

hay A=2

Vậy: \(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}=2\)

4 tháng 9 2016

Ta co A= 14 - 3A

<=> A+ 3A - 14 = 0

<=>  (A3 - 8) + (3A - 6) = 0

<=> (A - 2)(A2 + 2A + 7) = 0

<=> A = 2