K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

a) Ta có: \(\frac{\frac{4}{17}-\frac{4}{177}-\frac{4}{1779}}{\frac{5}{17}-\frac{5}{177}-\frac{5}{1779}}=\frac{4.\left(\frac{1}{7}-\frac{1}{177}-\frac{1}{1779}\right)}{5.\left(\frac{1}{7}-\frac{1}{177}-\frac{1}{1779}\right)}=\frac{4}{5}\)

b) \(\frac{1330}{1331}-\frac{7}{1.8}-\frac{19}{8.27}-.....-\frac{331}{1000.1331}\)

\(=\frac{1330}{1331}-\left(\frac{8-7}{1.8}+\frac{27-8}{8.27}+.....+\frac{1331-1000}{1000.1331}\right)\)

\(=\frac{1330}{1331}-\left(1-\frac{1}{8}+\frac{1}{8}-\frac{1}{27}+....+\frac{1}{1000}-\frac{1}{1331}\right)\)

\(=\frac{1330}{1331}-\left(1-\frac{1}{1331}\right)\)

\(=\frac{1330}{1331}-\frac{1330}{1331}=0\)

Vậy \(\frac{1330}{1331}-\frac{7}{1.8}-\frac{19}{8.27}-....\frac{331}{1000.1331}=0\)

CHÚC BẠN HỌC TỐT

29 tháng 9 2016

a) \(\frac{\frac{4}{17}-\frac{4}{177}-\frac{4}{1779}}{\frac{5}{17}-\frac{5}{177}-\frac{5}{1779}}\)

\(=\frac{4\left(\frac{1}{17}-\frac{1}{177}-\frac{1}{1779}\right)}{5\left(\frac{1}{17}-\frac{1}{177}-\frac{1}{1779}\right)}\)

\(=\frac{4}{5}\)

27 tháng 9 2016

\(\frac{\frac{4}{17}}{\frac{5}{17}}-\frac{\frac{4}{177}}{\frac{5}{177}}-\frac{\frac{4}{1779}}{\frac{5}{1779}}+\frac{131313}{151515}\)

\(=\)\(\frac{4}{1445}-\frac{4}{156645}-\frac{4}{15824205}\)\(+\frac{131313}{151515}\)

\(=\)\(0,8694090445\)

4 tháng 10 2021

yutyugubhujyikiu

14 tháng 9 2016

b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)

d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)

15 tháng 9 2016

Làm tiếp:

\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)

\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)

Bài 2:

Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)

\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)

\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)

\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)

Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)

15 tháng 9 2016

Bài 1:Tính

a,   Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)

Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)

\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)

\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)

\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)

\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)

Áp dụng vào bài toán ta có đáp số là:1

b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)

c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)

d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)

e,Xét mẫu số ta có:

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)

1 tháng 9 2016

a)|-10|:(-2):(-5)+(-3)2

    =1+9

     =10

b)1+(-2)+3+(-4)+5+(-6)+...+21+(-22)

   =[1+(-2)]+[3+(-4)]+[5+(-6)]+...+[21+(-22]

   =(-1)+(-1)+(-1)+...+(-1)

Mà từ 1 đến 22 có:(22-1):1+1:2=11(cặp)

        Suy ra:1+(-2)+3+(-4)+5+(-6)+...+21+(-22)=(-11)

1 tháng 9 2016

c)\(\frac{3}{4}.\frac{5}{9}+\frac{3}{4}.\frac{4}{9}\)

\(=\frac{3}{4}.\left(\frac{5}{9}+\frac{4}{9}\right)\)

\(=\frac{3}{4}\)

d)\(-\frac{4}{17}+\frac{5}{19}+-\frac{13}{17}+\frac{14}{19}+\frac{3}{115}\)

\(=\left[\left(-\frac{4}{17}\right)+\left(-\frac{13}{17}\right)\right]+\left(\frac{5}{19}+\frac{4}{19}\right)+\frac{3}{115}\)

\(=\left(-\frac{27}{17}\right)+1+\frac{3}{115}\)

\(=-\frac{1099}{1955}\)

e)\(\left(\frac{3}{4}+-\frac{7}{2}\right).\left(\frac{10}{11}+\frac{2}{22}\right)\)

\(=\left(\frac{3}{4}-\frac{14}{4}\right).\left(\frac{20}{22}+\frac{2}{22}\right)\)

\(=\left(-\frac{11}{4}\right).\left(\frac{22}{22}\right)\)

\(=-\frac{11}{4}\)

17 tháng 12 2016

a) \(\frac{17}{9}-\frac{17}{9}:\left(\frac{7}{3}+\frac{1}{2}\right)\)

= \(\frac{17}{9}-\frac{17}{9}:\frac{17}{6}\)

= \(\frac{17}{9}-\frac{2}{3}\)

= \(\frac{11}{9}\)

b) \(\frac{4}{3}.\frac{2}{5}-\frac{3}{4}.\frac{2}{5}\)

= \(\frac{2}{5}.\left(\frac{4}{3}-\frac{3}{4}\right)\)

= \(\frac{2}{5}.\frac{7}{12}\)

= \(\frac{7}{30}\)

Mình lười làm quá, hay mình nói kết quả cho bn thôi nha

c) -6

d) 3

e) 3

g) 12

h) \(\frac{23}{18}\)

i) \(\frac{-69}{20}\)

k) \(\frac{-1}{2}\)

l) \(\frac{49}{5}\)