Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)
\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)
Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)
Tìm min $S=a+b+c$
Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)
Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Lời giải:
Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)
\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)
Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)
Tìm min $S=a+b+c$
Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)
Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
A = \(\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{11}}\)= \(\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\)
= \(\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)= \(\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)= \(\frac{2.6}{3.7}=\frac{4}{7}\)
c, theo đề bài ta có :
x2 = yz, y2 = xz , z2 = xy
\(\Rightarrow\frac{x}{y}=\frac{z}{x},\frac{y}{x}=\frac{z}{y},\frac{z}{x}=\frac{y}{z}\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)
AD t/c DTSBN, ta có
\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\Rightarrow\frac{X+z+y}{y+x+z}=1\)
x= 1y
z= 1x
y= 1z
=> x = y = x