Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)
b: \(=2\sqrt{5}-2-2\sqrt{5}=-2\)
c: \(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
d: \(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{3\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\)
e: \(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)
a: \(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{2}\sqrt{2}\right)\cdot5\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+\dfrac{9}{2}\sqrt{2}\right)\cdot5\sqrt{6}\)
\(=60-20\sqrt{18}+\dfrac{45}{2}\sqrt{12}\)
\(=60-60\sqrt{2}+45\sqrt{3}\)
b: \(=\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}+3}{3}\cdot\dfrac{1}{3+2\sqrt{2}}\)
\(=\dfrac{2\sqrt{5}+3}{3}\cdot\dfrac{1}{3+2\sqrt{2}}=\dfrac{2\sqrt{5}+3}{9+6\sqrt{2}}\)
a: \(=2\cdot\dfrac{4}{3}\sqrt{3}-3\cdot\dfrac{1}{9}\sqrt{3}-6\cdot\dfrac{2}{15}\sqrt{3}\)
\(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)
b: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c: \(=6\sqrt{3}-4\sqrt{3}+\dfrac{3}{5}\cdot5\sqrt{3}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)
\(1.A=\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}\sqrt{\dfrac{1}{3}.144}-2\sqrt{\dfrac{1}{3}.225}-\sqrt{\dfrac{1}{3}.9}+5\sqrt{\dfrac{4}{3}}=6\sqrt{\dfrac{1}{3}}-30\sqrt{\dfrac{1}{3}}-3\sqrt{\dfrac{1}{3}}+10\sqrt{\dfrac{1}{3}}=-17\sqrt{\dfrac{1}{3}}\) \(2.B=\left(2\sqrt{27}-3\sqrt{48}+3\sqrt{75}-\sqrt{192}\right)\left(1-\sqrt{3}\right)=\left(6\sqrt{3}-12\sqrt{3}+15\sqrt{3}-8\sqrt{3}\right)\left(1-\sqrt{3}\right)=\sqrt{3}\left(1-\sqrt{3}\right)=\sqrt{3}-3\) \(3.C=\left(2\sqrt{7}-2\sqrt{6}\right).\sqrt{6}-\sqrt{168}=2\sqrt{42}-12-2\sqrt{42}=-12\) \(4.D=\left(\sqrt{28}-2\sqrt{8}+\sqrt{7}\right).\sqrt{7}+4\sqrt{14}=\left(3\sqrt{7}-4\sqrt{2}\right)\sqrt{7}=21-4\sqrt{14}+4\sqrt{14}=21\)
Bài 2:
a: \(=\sqrt{5}-2\)
b: \(=2\sqrt{3}+4\sqrt{3}-5\sqrt{3}-9\sqrt{3}=-8\sqrt{3}\)
c: \(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2\sqrt{2}}=\sqrt{16-8}=2\sqrt{2}\)
d: \(=\sqrt{2}+1-2+\sqrt{2}=2\sqrt{2}-1\)
e: \(=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\dfrac{6+2\sqrt{5}}{4}\)
\(=\dfrac{16-3-\sqrt{5}}{2}=\dfrac{13-\sqrt{5}}{2}\)
f: \(=\sqrt{5\sqrt{3+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{5\sqrt{3+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3+5\left(5-\sqrt{3}\right)}}\)
\(=\sqrt{5\sqrt{3+25-5\sqrt{3}}}\)
\(=\sqrt{5\sqrt{28-5\sqrt{3}}}\)
\(a,2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}-\dfrac{2}{5}.\sqrt{\dfrac{75}{16}}\)
\(\Leftrightarrow2.\dfrac{\sqrt{27}}{2}-\sqrt{\dfrac{48}{3}}-\dfrac{2}{5}.\dfrac{\sqrt{75}}{4}\)
\(\Leftrightarrow\sqrt{27}-\dfrac{4\sqrt{3}}{3}-\dfrac{1}{5}.\dfrac{5\sqrt{3}}{2}\)
\(\Leftrightarrow3\sqrt{3}-\dfrac{4\sqrt{3}}{3}-\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\dfrac{7\sqrt{3}}{6}\)
\(b,\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right).\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
\(\Leftrightarrow\)\(\left[1+\dfrac{\left(5-\sqrt{5}\right)\left(1+\sqrt{5}\right)}{-4}\right].\left[\dfrac{\left(5+\sqrt{5}\right).\left(1-\sqrt{5}\right)}{-4}+1\right]\)
\(\Leftrightarrow\)\(\left(1+\dfrac{5+5\sqrt{5}-\sqrt{5}-5}{-4}\right).\left(\dfrac{5-5\sqrt{5}+\sqrt{5}-5}{-4}+1\right)\)
\(\Leftrightarrow\)\(\left(1+\dfrac{4\sqrt{5}}{-4}\right)\left(\dfrac{-4\sqrt{5}}{-4}+1\right)\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)
\(\Leftrightarrow\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)\)
<=> 1-5
=-4
b: \(=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8}{\sqrt{5}-1}\)
\(=2\sqrt{5}-2-2\sqrt{5}\)
=-2
c: \(=\dfrac{\sqrt{4}\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{\sqrt{6}}{2}\)
a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=-2
b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)
c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)
\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)
a: \(5\sqrt{2}-8\sqrt{3}+30\sqrt{3}-6\sqrt{3}=5\sqrt{2}+16\sqrt{3}\)
b: \(=14\sqrt{3}-\dfrac{3}{32}\cdot8\sqrt{3}+\dfrac{4}{18}\cdot9\sqrt{3}-\dfrac{1}{10}\cdot10\sqrt{3}\)
\(=14\sqrt{3}-\dfrac{3}{4}\sqrt{3}+2\sqrt{3}-1\sqrt{3}=\dfrac{57}{4}\sqrt{3}\)
c: \(=\dfrac{-1}{2}\cdot6\sqrt{3}+\dfrac{1}{15}\cdot5\sqrt{3}-\dfrac{1}{22}\cdot11\sqrt{3}+2\sqrt{3}\)
\(=-3\sqrt{3}+\dfrac{1}{3}\sqrt{3}-\dfrac{1}{2}\sqrt{3}+2\sqrt{3}=-\dfrac{7}{6}\sqrt{3}\)
d: \(=\dfrac{5}{8}\cdot4\sqrt{3}-\dfrac{1}{33}\cdot11\sqrt{3}+\dfrac{3}{14}\cdot7\sqrt{3}-\dfrac{1}{4}\cdot8\sqrt{3}\)
\(=\dfrac{5}{2}\sqrt{3}-\dfrac{1}{3}\sqrt{3}+\dfrac{3}{2}\sqrt{3}-2\sqrt{3}=\dfrac{5}{3}\sqrt{3}\)