Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S=(1-2)^2+(3-4)^3+......+(99-100)^99
=(-1)^2+(-1)^3+......+(-1)^99
=1+(-1)+....+(-1)
=[1+(-1)]+[1+(-1)]+.......+[1+(-1)]
=0+0+.....+0=0
1^2-2^2+3^2-4^2+.......+99^2-100^2
=(1+2)(-1)+(3+4)(-1)+......+(99+100)(-1)
=(-1)(1+2+3+4+......+99+100)=(-1).101.100:2=-5050
\(a,\)Đặt \(A=1+2+2^2+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2+2^2+...+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
\(b,\)Đặt \(B=5+5^3+5^5+...+5^{97}+5^{99}\)
\(\Rightarrow5^2B=5^3+5^5+...+5^{99}+5^{101}\)
\(\Rightarrow25B-B=\left(5^3+5^5+...+5^{99}+5^{101}\right)-\left(5+5^3+...+5^{99}\right)\)
\(\Rightarrow24B=5^{101}-5\)
\(\Rightarrow B=\frac{5^{101}-5}{24}\)
A = 2100 - 299 - 298 - ...-2-1
=> 2A = 2101 - 2100 - 299-...-22 - 2
=> 2A-A = 2101 - 2100 - 2100 + 1
A = 2101 - 2100.(1+1) + 1
A = 2101 - 2100. 2+1
A = 2101- 2101+1
A = 1
b) B = 1 - 5 + 52 - 53+...+598-599
=> 5B = 5 - 52+53-54+...+599-5100
=> 5B+B = -5100+1
6B = -5100+1
\(B=\frac{-5^{100}+1}{6}\)
ta có: 1^2 - 2^2 +3^2 -4^2 +...........+99^2-100^2+101^2
= (1-2)(1+2) + (3-4)(3+4) + (5-6)(5+6) + ....+ (99-100)(99+100) +101^2
= -3 - 7 - 11 - ....-199 + 101^2
= 101^2 - (3 + 7 + 11 + ... + 199)
[ Ta dễ thấy (3 + 7 + 11 + ... + 199) là một cấp số cộng có d=4 và n=50]
= 101^2 - [(199 + 3).50]/2
= 5151
ta có: 1^2 - 2^2 +3^2 -4^2 +...........+99^2-100^2+101^2
= (1-2)(1+2) + (3-4)(3+4) + (5-6)(5+6) + ....+ (99-100)(99+100) +101^2
= -3 - 7 - 11 - ....-199 + 101^2
= 101^2 - (3 + 7 + 11 + ... + 199)
[ Ta dễ thấy (3 + 7 + 11 + ... + 199) là một cấp số cộng có d=4 và n=50]
= 101^2 - [(199 + 3).50]/2
= 5151
\(a.A=2+2+2^2+2^3+2^4+...+2^{99}\)
\(A=2+\left(2+2^2+2^3+2^4+...2^{99}\right)\)
\(\Rightarrow A-2=2+2^2+2^3+2^4+...+2^{99}\)
\(2.\left(A-2\right)=2^2+2^3+2^4+2^5+...+2^{100}\)
\(2.\left(A-2\right)-\left(A-2\right)=2^{100}-2=2.2^{99}\)
\(A=2.2^{99}+2\)
Câu b bạn tự giải nhé
a/B=5^101-5
b/A=2^6-2^2