K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

Xem lại đề câu a, nhé

30 tháng 9 2018

Sửa đề: Cho \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)

Giải:

Dặt \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\Rightarrow\hept{\begin{cases}a=ka'\\b=kb'\\c=kc'\end{cases}}\)

Ta có:

\(\frac{a-3b+2c}{a'-3b'-2c'}=\frac{ka'-3kb'+2kc'}{a'-3b'+2c'}=\frac{k\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=k=\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)

7 tháng 10 2016

de ma

 

28 tháng 7 2017

Dễ sao bn ko làm đi!leu

30 tháng 9 2018

\(từ:\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\Rightarrow\frac{a}{a'}=\frac{3b}{3b'}=\frac{2c}{2c'}=2018\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{a'}=\frac{3b}{3b'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a-3b'+2c}=2018\)

20 tháng 2 2017

mình cũng đang tìm

5 tháng 3 2020

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}=\frac{3\left(a+b+c\right)}{a+b+c}=3\)

\(\Rightarrow\hept{\begin{cases}2a+b=3c\\2b+c=3a\\3c+a=3b\end{cases}}\)

\(\Rightarrow BT=\frac{3c}{c}+\frac{a}{3a}+\frac{3b}{b}=6+\frac{1}{3}=\frac{19}{3}\)

3 tháng 4 2022

Vậy nếu a+b+c = 0 thì sao ?