Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,( √6+2)(√3-√2)
<=> ( √2√3+2)(√3-√2)
<=> √2(√3+√2)(√3-√2)
<=> √2( (√3)2-(√2)2) = √2
b, (√3+1)2-2√3+4
<=> (√3)2 +2√3 +1 -2√3+4 =8
c, (1+√2-√3)(√2+√3)
<=>√2+√3+(√2)2+√6-√6-(√3)2
<=> √2+√3-1
d, √3(√2-√3)2-(√3+√2)
<=> √3( 2-2√6+3)-√3-√2
<=> 5√3-2√18-√3-√2
<=> 4√3-√2(√36-1)
<=> 4√3 - 3√2
e, (1+2√3-√2)(1+2√3+√2)
<=> (1+2√3)2-(√2)2
<=> (1+4√3+(2√3)2)-2
<=> 1+4√3+12-2= 11+4√3
g, (1-√3)2(1+2√3)2
<=>(1-2√3+3)(1+4√3+12)
<=>( 4-2√3)(13+4√3)
<=> 52+16√3-26√3-24
<=> -10√3+28
a) \(\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}=\sqrt{2}+\sqrt{3}\)
b) \(\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
c) \(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)\(=2\sqrt{5}\)
d) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\sqrt{2}-\sqrt{3}-1-\sqrt{3}\)
\(=\sqrt{12}-\sqrt{2}-1\)
e) \(\sqrt{\left(\sqrt{3-1}^2\right)-\sqrt{3}}=\sqrt{\sqrt{2}^2-\sqrt{3}}=\sqrt{2-\sqrt{3}}\)
P/S: Ko chắc
b) \(\left(1+\sqrt{3+\sqrt{5}}\right)\left(1+\sqrt{3-\sqrt{5}}\right)=1+\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}+\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}+3\)Đặt A=\(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}+3\)
⇒A-3=\(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
⇒(A-3)2=\(3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=6+2\sqrt{4}=10\)
⇒A-3=\(\sqrt{10}\Rightarrow A=\sqrt{10}+3\)
c) Tương tự như câu b)
Chúc bạn học tốt
a) (√(2-√3)+√(2-√3))2=2-√3+2+√3-2√((2-√3)(2+√3))
=4-2√(22-(√3)2)=4-2√1=4-2=2
a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}=3-2\sqrt{2}+3-2\sqrt{2}=6\)
b\(\sqrt{(5-2\sqrt{6})^2}+\sqrt{(5+2\sqrt{6})^2}=5-2\sqrt{6}+5+2\sqrt{6}=10 \)
các ý còn lại làm tương tự
hình như ở câu a) chỗ sau dấu bằng đầu tiên bạn bị sai dấu trừ cuối cùng
a/ \(\sqrt{\left(\frac{1}{\sqrt{2}}-\frac{1}{2}\right)^2}=\) \(|\frac{1}{\sqrt{2}}-\frac{1}{2}|\)
\(=|\frac{\sqrt{2}-1}{2}|\)
\(=\frac{\sqrt{2}-1}{2}\)
các câu còn lại tương tự nha
chúc bn học tốt
Có \(\sqrt{3}>\sqrt{1}\)
=> \(1-\sqrt{3}< 0\)
Có \(A=\sqrt{\left(1-\sqrt{3}\right)^2+\left(1-\sqrt{3}\right)^2}\)
\(=\sqrt{2\left(1-\sqrt{3}\right)^2}=\sqrt{2}.\sqrt{\left(1-\sqrt{3}\right)^2}=\sqrt{2}.\left(\sqrt{3}-1\right)=\sqrt{6}-\sqrt{2}\)
\(B=\sqrt{\left(1+\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2}\)
\(=\sqrt{\left(1+\sqrt{3}-1+\sqrt{3}\right)\left(1+\sqrt{3}+1-\sqrt{3}\right)}=\sqrt{2\sqrt{3}.2}=2\sqrt{3}\)