Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=\frac{2}{11.15}+\frac{2}{15.19}+\frac{2}{19.23}+...+\frac{2}{51.55}\)
\(\Rightarrow 2A=\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+...+\frac{4}{51.55}\)
\(=\frac{15-11}{11.15}+\frac{19-15}{15.19}+\frac{23-19}{19.23}+....+\frac{55-51}{51.55}\)
\(=\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+...+\frac{1}{51}-\frac{1}{55}\)
\(=\frac{1}{11}-\frac{1}{55}=\frac{4}{55}\)
\(\Rightarrow A=\frac{2}{55}\)
=\(1\left(\frac{1}{14.15}+\frac{1}{15.19}+......+\frac{1}{51.55}\right)\)
=\(1\left(\frac{1}{14}-\frac{1}{15}\right)+\left(\frac{1}{15}-\frac{1}{19}\right).....+\left(\frac{1}{51}-\frac{1}{55}\right)\)
=\(1\left(\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}....+\frac{1}{51}-\frac{1}{55}\right)\)
=\(1\left(\frac{1}{14}-\frac{1}{55}\right)\)
=\(1.\frac{41}{770}\)
=\(\frac{41}{770}\)
\(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\)
= \(4.\left(\text{}\text{}\text{}\text{}\text{}\text{}\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\right)\)
=\(1.\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+...+\dfrac{1}{23.27}\right)\)
= \(1.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{23}-\dfrac{1}{27}\right)\)
=\(1.\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)
=\(1.\left(\dfrac{9}{27}-\dfrac{1}{27}\right)\)
= \(1.\dfrac{8}{27}\)
= \(\dfrac{8}{27}\)
\(A=\frac{1}{2}.\left(\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+...+\frac{4}{51.55}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+...+\frac{1}{51}-\frac{1}{55}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{1}{2}.\frac{4}{55}=\frac{2}{55}\)
\(\Rightarrow A=\frac{2}{4}\left(\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+.....+\frac{1}{51.55}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{1}{2}.\frac{4}{55}=\frac{2}{55}\)
\(VậyA=\frac{2}{55}\)
\(A=\dfrac{-5}{3}\cdot\dfrac{11}{2}\cdot\dfrac{4}{3}=\dfrac{-20\cdot11}{2\cdot9}=\dfrac{-110}{9}\)
\(B=\dfrac{2}{4}\left(\dfrac{4}{11\cdot15}+\dfrac{4}{15\cdot19}+...+\dfrac{4}{51\cdot55}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+...+\dfrac{1}{51}-\dfrac{1}{55}\right)\)
=1/2*4/55
=2/55
a) \(A=\frac{2}{11.15}+\frac{2}{15.19}+...+\frac{2}{51.55}\)
\(=\frac{1}{2}\left(\frac{4}{11.15}+\frac{4}{15.19}+...+\frac{4}{51.55}\right)\)
\(=\frac{1}{2}\left(\frac{15-11}{11.15}+\frac{19-15}{15.19}+...+\frac{55-51}{51.55}\right)\)
\(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\right)\)
\(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{2}{55}\)
b) \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.7.11.13\)suy ra đpcm.
\(\overline{abcabc}=1001.\overline{abc}=7.11.13.\overline{abc}\)
7, 11, 13 là các số nguyên tố
Bài 1 : Rút gọn các phân số sau đến tối giản :
a) \(\dfrac{3.21}{14.15}=\dfrac{3.3.7}{2.7.3.5}=\dfrac{1.3.1}{2.1.1.5}=\dfrac{3}{10}\)
b) \(\dfrac{49+49.7}{49}=\dfrac{49\left(1+7\right)}{49}=\dfrac{49.8}{49}=\dfrac{1.8}{1}=\dfrac{8}{1}=8\)
A= \(\dfrac{1}{7.15}+\dfrac{2}{285}+\dfrac{2}{437}+\dfrac{2}{51.55}\)
A= \(\dfrac{1}{105}+\dfrac{2}{285}+\dfrac{2}{437}+\dfrac{2}{2805}\)
A=\(\dfrac{9859}{451605}\)