K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=-5\cdot\left(-8\right)=40\)

b: \(B=-1\cdot\left(81-16\right)=-65\)

c: \(C=125\cdot\left(-7-8\right)+4=-1871\)

d: \(D=-9+8-1=-2\)

13 tháng 1 2018

Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha

1, 7A = 7+7^2+7^3+....+7^2008

6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1

=> A = (7^2008-1)/6

Tk mk nha

\(A=1+7+7^2+7^3+...+7^{2007}\)

\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)

\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)

\(\Rightarrow6A=7^{2008}-1\)

\(\Rightarrow A=\frac{7^{2008}-1}{6}\)

12 tháng 7 2017

b1

a) \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{5}-\dfrac{1}{10}\)

\(=\dfrac{2}{10}-\dfrac{1}{10}\)

\(=\dfrac{1}{10}\)

b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\dfrac{1}{1}-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

c) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)

\(=\dfrac{1}{3}-\dfrac{1}{11}\)

\(=\dfrac{8}{33}\)

d) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=\dfrac{1}{3}-\dfrac{1}{101}\)

\(=\dfrac{98}{303}\)

12 tháng 7 2017

ban lam bai 2 va 3 nua nha ♥♥♥

20 tháng 2 2021
Lấy kết quả×0+123
20 tháng 2 2021
Lấy kết quả ×0+12345678910
28 tháng 8 2018

\(a.\frac{1}{7}\times\frac{-3}{8}+\frac{-13}{8}==\frac{-3}{56}+\frac{-13}{8}=\frac{-3}{56}+\frac{-91}{56}=\frac{-94}{56}=\frac{-47}{28}\)

\(b.\frac{3}{5}\times\frac{13}{40}-\frac{1}{10}\times\frac{16}{23}=\frac{39}{200}-\frac{8}{115}=\frac{577}{4600}\)

\(c.\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{1}{4}\right):\frac{3}{7}\)

\(=\left(\frac{-3}{4}+\frac{2}{5}\right)\times\frac{7}{3}+\left(\frac{3}{5}+\frac{1}{4}\right)\times\frac{7}{3}\)

\(=\frac{7}{3}\times\left(\frac{-3}{4}+\frac{2}{5}+\frac{3}{5}+\frac{1}{4}\right)\)

\(=\frac{7}{3}\times\left[\left(\frac{-3}{4}+\frac{1}{4}\right)+\left(\frac{2}{5}+\frac{3}{5}\right)\right]\)

\(=\frac{7}{3}\times\left(\frac{-2}{4}+1\right)\)

\(=\frac{7}{3}\times\frac{1}{2}\)

\(=\frac{7}{6}\)

\(d.\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{8}\right)+\frac{7}{8}:\left(\frac{1}{6}-\frac{5}{12}\right)\)

\(=\frac{7}{8}:\frac{7}{72}+\frac{7}{8}:\left(\frac{-1}{4}\right)\)

\(=\frac{7}{8}\times\frac{72}{7}+\frac{7}{8}\times-4\)

\(=\frac{7}{8}\times\left(\frac{72}{7}+\left(-4\right)\right)\)

\(=\frac{7}{8}\times\frac{44}{7}\)

\(=\frac{11}{2}\)

12 tháng 4 2017

a, \(A=\dfrac{1}{3}.\dfrac{-6}{-3}.\dfrac{-9}{10}.\dfrac{-13}{36}\)

\(A=\dfrac{1.\left(-6\right).\left(-9\right).\left(-13\right)}{3.13.10.36}\)

\(A=\dfrac{-1}{10.2}\)

\(A=\dfrac{-1}{20}\)

b, \(B=\dfrac{-1}{3}.\dfrac{-15}{17}.\dfrac{34}{45}\)

\(B=\dfrac{\left(-1\right).\left(-15\right).34}{3.17.45}\)

\(B=\dfrac{2}{3.3}\)

\(B=\dfrac{2}{9}\)

c, \(C=\dfrac{1}{3}.\dfrac{4}{5}+\dfrac{1}{3}.\dfrac{6}{5}+\dfrac{2}{3}\)

\(C=\dfrac{1}{3}.\left(\dfrac{4}{5}+\dfrac{6}{5}\right)+\dfrac{2}{3}\)

\(C=\dfrac{1}{3}.2+\dfrac{2}{3}\)

\(C=\dfrac{2}{3}+\dfrac{2}{3}\)

\(C=\dfrac{4}{3}\)

d, \(D=\dfrac{-5}{6}.\dfrac{4}{19}+\dfrac{-7}{12}.\dfrac{4}{19}-\dfrac{40}{57}\)

\(D=\dfrac{4}{19}.\left(\dfrac{-5}{6}+\dfrac{-7}{12}\right)-\dfrac{40}{57}\)

\(D=\dfrac{4}{19}.\dfrac{-17}{12}-\dfrac{40}{57}\)

\(D=\dfrac{-17}{57}-\dfrac{40}{57}\)

\(D=\dfrac{-57}{57}=-1\)

e, \(E=\dfrac{3}{7}.\dfrac{9}{26}-\dfrac{1}{14}.\dfrac{1}{13}-\dfrac{1}{7}\)

\(E=\dfrac{3}{7}.\dfrac{9}{26}-\left(\dfrac{1}{14}.\dfrac{1}{13}+\dfrac{1}{7}\right)\)

\(E=\dfrac{3}{7}.\dfrac{9}{26}-\left(\dfrac{1}{182}+\dfrac{1}{7}\right)\)

\(E=\dfrac{3}{7}.\dfrac{9}{26}-\dfrac{27}{182}\)

\(E=\dfrac{27}{182}-\dfrac{27}{182}\)

\(E=0\)