Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. M=-1^2+2^2-3^2+4^2-...-99^2+100^2.
M=(2-1)(2+1)+(4-3)(4+3)+...+(100-99)(100+99)
M=3+7+...+199
=>2M=3+7+...+199+3+7+...+199 (198 số)
=(3+199)+(7+195)+...+(199+3) (99 cặp)
=202.99
=19998
=>M=19998:2=9999
b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{64}-1\right)-2^{64}\)
\(=-1\)
\(\left(1^2-2^2\right)+\left(3^2-4^2\right)+....+\left(99^2-100^2\right)\)
\(=\left(1-2\right)\left(2+1\right)+\left(3-4\right)\left(4+3\right)+....+\left(99-100\right)\left(100+99\right)\)
\(=\left(-1\right)\left(1+2+3+....+100\right)=\frac{\left(-1\right)100.99}{2}=-4950\)
\(100^2-99^2+98^2-97^2+...+2^2-1\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+....+\left(2-1\right)\left(2+1\right)\)
\(=1.199+1.195+...+1.3\)
\(=199+195+....+3\)
\(=\left[\left(\dfrac{199-3}{4}\right)+1\right]:2.\left(199+3\right)=5050\)
\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{3^{32}-1}{2}\)
\(3\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{64}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right).....\left(2^{64}+1\right)\)
\(=\left(2^8-1\right)......\left(2^{64}+1\right)=2^{128}-1\)
a,A=-(12-22+32-42+...+992-1002)
=-[(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)]
=-[(-1).3+(-1).7+...+(-1).199]
=-[(-1).(3+7+...+199]
=\(\frac{\left(199+3\right).50}{2}=5050\)
b, tương tự a
c) C=1(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)-264
=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)-264
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)-264
=(24-1)(24+1)(28+1)(216+1)(232+1)-264
=(28-1)(28+1)(216+1)(232+1)-264
=(216-1)(216+1)(232+1)-264
=(232-1)(232+1)-264
=264-1-264
=-1
b) -12 + 22 - 32 + 42 - ... - 992 + 1002
= (22 - 12) + (42 - 32) + ... + (1002 - 992)
= (2 + 1)(2 - 1) + (4 + 3)(4 - 3) + ... + (100 + 99)(100 - 99)
= (1 + 2) + (3 + 4) + ... + (99 + 100)
= 5050
a) (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)
= [(3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)] : 2
= [(32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)] : 2
= [(34 - 1)(34 + 1)(38 + 1)(316 + 1)] : 2
Và cứ như thế ta được kết quả là (332 - 1) : 2 = 926510094425920
A) A= -1^2+2^2-3^2+4^2...99^2+100^2
A = ( 22 - 12 ) . ( 42 - 32 ) + ... + ( 1002 - 992 )
= ( 2 - 1 ) . ( 1 + 2 ) + ( 4 - 3 ) . ( 3 + 4 ) + ... + ( 100 - 99 ) . ( 99 + 100 )
= 1 + 2 + 3 + 4 + ... + 99 + 100
= \(\frac{100.101}{2}=5050\)
câu a sai đề
b. Ta có : B = (2+1)(24+1)(28+1)(216+1)
⇒ 3B = 3(2-1)(2+1)(24+1)(28+1)(216+1)
= (22-1)(22+1)(24+1)(28+1)(216+1)
= (24-1)(24+1)(28+1)(216+1)
= (28-1)(28+1)(216+1)
= (216-1)(216+1)
= 232-1
⇒ B = \(\dfrac{2^{32}-1}{3}\)
\(A=2^2-1^2+4^2-3^2+...+100^2-99^2\)
=(2-1)(2+1)+(4-3)(4+3)+...+(100-99)(100+99)
=1+2+3+4+...+99+100
=5050