K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

câu a sai đề

b. Ta có : B = (2+1)(24+1)(28+1)(216+1)

⇒ 3B = 3(2-1)(2+1)(24+1)(28+1)(216+1)

= (22-1)(22+1)(24+1)(28+1)(216+1)

= (24-1)(24+1)(28+1)(216+1)

= (28-1)(28+1)(216+1)

= (216-1)(216+1)

= 232-1

⇒ B = \(\dfrac{2^{32}-1}{3}\)

27 tháng 10 2022

\(A=2^2-1^2+4^2-3^2+...+100^2-99^2\)

=(2-1)(2+1)+(4-3)(4+3)+...+(100-99)(100+99)

=1+2+3+4+...+99+100

=5050

23 tháng 6 2015

a. M=-1^2+2^2-3^2+4^2-...-99^2+100^2.

M=(2-1)(2+1)+(4-3)(4+3)+...+(100-99)(100+99)

M=3+7+...+199

=>2M=3+7+...+199+3+7+...+199 (198 số)

=(3+199)+(7+195)+...+(199+3)   (99 cặp)

=202.99

=19998

=>M=19998:2=9999

3 tháng 9 2019

b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{64}-1\right)-2^{64}\)

\(=-1\)

3 tháng 9 2019

\(\left(1^2-2^2\right)+\left(3^2-4^2\right)+....+\left(99^2-100^2\right)\) 

\(=\left(1-2\right)\left(2+1\right)+\left(3-4\right)\left(4+3\right)+....+\left(99-100\right)\left(100+99\right)\) 

\(=\left(-1\right)\left(1+2+3+....+100\right)=\frac{\left(-1\right)100.99}{2}=-4950\)

7 tháng 10 2017

\(100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+....+\left(2-1\right)\left(2+1\right)\)

\(=1.199+1.195+...+1.3\)

\(=199+195+....+3\)

\(=\left[\left(\dfrac{199-3}{4}\right)+1\right]:2.\left(199+3\right)=5050\)

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{3^{32}-1}{2}\)

\(3\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{64}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right).....\left(2^{64}+1\right)\)

\(=\left(2^8-1\right)......\left(2^{64}+1\right)=2^{128}-1\)

17 tháng 6 2018

Giúp TT

17 tháng 6 2018

a,A=-(12-22+32-42+...+992-1002)

=-[(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)]

=-[(-1).3+(-1).7+...+(-1).199]

=-[(-1).(3+7+...+199]

=\(\frac{\left(199+3\right).50}{2}=5050\)

b, tương tự a

c) C=1(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)-264

=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)-264

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)-264

=(24-1)(24+1)(28+1)(216+1)(232+1)-264

=(28-1)(28+1)(216+1)(232+1)-264

=(216-1)(216+1)(232+1)-264

=(232-1)(232+1)-264

=264-1-264

=-1

27 tháng 6 2019

b) -12 + 22 - 32 + 42 - ... - 992 + 1002

= (22 - 12) + (42 - 32) + ... + (1002 - 992)

= (2 + 1)(2 - 1) + (4 + 3)(4 - 3) + ... + (100 + 99)(100 - 99)

= (1 + 2) + (3 + 4) + ... + (99 + 100)

= 5050

27 tháng 6 2019

a) (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)

= [(3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)] : 2

= [(32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)] : 2

= [(34 - 1)(34 + 1)(38 + 1)(316 + 1)] : 2

Và cứ như thế ta được kết quả là (332 - 1) : 2 = 926510094425920

14 tháng 3 2017

tầm như của lớp 6dungfds hơn

1 tháng 6 2018

A) A= -1^2+2^2-3^2+4^2...99^2+100^2

A = ( 22 - 12 ) . ( 42 - 32 ) + ... + ( 1002 - 992 )

= ( 2 - 1 ) . ( 1 + 2 ) + ( 4 - 3 ) . ( 3 + 4 ) + ... + ( 100 - 99 ) . ( 99 + 100 )

= 1 + 2 + 3 + 4 + ... + 99 + 100

\(\frac{100.101}{2}=5050\)

14 tháng 7 2015

Câu b đúng r mà trieu dang