Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2P=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\)
\(2P=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{98}-\frac{1}{100}\)
\(2P=\frac{1}{2}-\frac{1}{100}\)
=> P =\(\frac{49}{100}:2=\frac{49}{100}\cdot\frac{1}{2}=\frac{49}{200}\)
\(x-\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{98.100}\right)=\dfrac{1}{100}\)
\(x-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)=\dfrac{1}{100}\)
\(x-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{100}\)
\(x=\dfrac{51}{200}\)
=1-1/3-1/2+1/4+1/3-1/5-1/4+1/6+...+1/97-1/99-1/98+1/100
=1-1/2-1/99-1/98=2327/4851
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{49}{100}\)
\(=\frac{49}{200}\)
\(\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)
\(=1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\)
\(=1-\frac{1}{2}-\frac{1}{99}-\frac{1}{98}\)
\(=\frac{2327}{4851}\)
Đặt A=1/1.3 - 1/2.4 +1/3.5 -1/4.6 +.....+1/97.99 -1/98.100
4A= 4/1.3 -4/2.4 +4/3.5 -4/4.6 +.....+4/97.99 -4/98.100
=(4/1.3 +4/3.5 +...+4/97.99) - (4/2.4 +4/4.6 +...+4/98.100)
=(1/1 -1/3+1/3-1/5+...+1/97-1/99)-(1/2 -1/4 -....1/98-1/100)
=(1/1-1/99)-(1/2-1/100)
4A=98/99 - 99/100
A= (98/99-99/100) :4
Tính:
1. \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{100}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right)...\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{99}{100}\)
\(=\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{100}\)
2. \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{98.100}\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{50}{100}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}.\dfrac{49}{100}\)
\(=\dfrac{49}{200}\)
\(\Rightarrow\dfrac{49}{200}\)