Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1 +\(\frac{1}{3}\)+\(\frac{1}{6}\)+ .....+ \(\frac{1}{171}\)+\(\frac{1}{190}\)
A= 1 +2.(\(\frac{1}{6}\)+\(\frac{1}{12}\)+....+\(\frac{1}{342}\)+\(\frac{1}{380}\))
A=1+ 2.(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+....+\(\frac{1}{18.19}\)+\(\frac{1}{19.20}\))
A=1+2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+......+\(\frac{1}{18}\)-\(\frac{1}{19}\)+\(\frac{1}{19}\)-\(\frac{1}{20}\))
A=1 +2.(\(\frac{1}{2}\)-\(\frac{1}{20}\))
A=1+2.\(\frac{9}{20}\)=1+\(\frac{9}{10}\)=\(\frac{19}{10}\)
1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)
=(1-1/3)....0.....(1-9/5)
=0
=>đpcm.
b)ta xét:
1/22 = 1/2x2 < 1/1x2
.............
1/82 = 1/8x8 <1/7x8
=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8
<=> B <1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8
<=> B < 1 - 1/8 = 7/8 < 1
=> B < 1 => đpcm
2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)
Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)
Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)
=> A > B
b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C
=> C > D
c)gọi 2010 là a
ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)
áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)
=> E > F
1. 2006/987654321 + 2007/246813579 = 2007/246813579 + 2006/987654321
=>
2.
3 - (5.3/8 + X - 7 . 5/24) : 6 . 2/3 =2
3 - (15/8 + X - 35/24) : 4 = 2
3 - (15/8 + X - 35/24) = 2 . 4
3 - (15/8 + X - 35/24) = 8
15/8 + X - 35/24 = 3 - 8
15/8 + X - 35/24 = -5
15/8 + X = -5 + 35/24
15/8 + X = -85/24
X = -85/24 - 15/8
X = -65/12
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
\(\frac{M}{N}=\frac{\frac{1}{2007}+\frac{2}{2006}+......+\frac{2006}{2}+\frac{2007}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2006}+\frac{1}{2007}}\)
\(\frac{M}{N}=\frac{\frac{1}{2007}+1+\frac{2}{2006}+1+.......+\frac{2007}{1}+1+\frac{2008}{2008}-2008}{\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+.....+\frac{1}{2}}\)
\(\frac{M}{N}=\frac{\frac{2008}{2007}+\frac{2008}{2006}+....+\frac{2008}{1}+\frac{2008}{2008}-2008}{\frac{1}{2008}+........+\frac{1}{2}}\)
đến đây là ra rùi ha
\(A=1+2+2^2+.......+2^{2007}\Rightarrow2A=2+2^2+2^3+.........+2^{2008}\)
b) sai đề
c) dễ lắm
a) Số số hạng: (200-2):2+1=100\(\Rightarrow\)S=(2-4)+(6-8)+...+(1998-2000)=-2x50=-100
b) S=(2-4)-(6-8)-...-(1994-1996)-(1998-2000)=0
c) S=-(1+2+3+....+2005+2008+2007)
Số số hạng:(2007-1)+1=2007. Vậy S=-(2007+1)x2007:2=-2015028
\(A=1+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{380}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{19.20}\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=1+2\times\frac{9}{20}\)
\(=1+\frac{9}{10}\)
\(=\frac{19}{10}\)
b)\(2S=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)
\(2S=1+\frac{1}{2}+...+\frac{1}{2^{19}}\)
\(2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)
\(S=1-\frac{1}{2^{20}}\)
c)đặt A=1+2+2^2+2^3+...+2^2006+2^2007.
2A=2(1+2+2^2+2^3+...+2^2006+2^2007)
2A=2+2^2+2^3+...+2^2008
2A-A=(2+2^2+2^3+...+2^2008)-(1+2+2^2+2^3+...+2^2006+2^2007)
A=2^2008-1