Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=6-\frac{3}{512}\)
\(S=\frac{3069}{512}\)
Vậy \(S=\frac{3069}{512}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(\Leftrightarrow2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(\Leftrightarrow2S-S=6-\frac{3}{2^9}\)
\(\Leftrightarrow S=6-\frac{3}{2^9}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
=> \(S=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=> \(2A=2+1+\frac{1}{2}+\frac{1}{2^8}\)
=> \(A=2A-A=2-\frac{1}{2^9}\)
=> \(S=3A=3\left(2-\frac{1}{2^9}\right)=6-\frac{3}{2^9}\)
Ta có :
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=\frac{2^{10}.3-3}{2^9}\)
Vậy \(S=\frac{2^{10}.3-3}{2^9}\)
vận dụng 3S lên
xong tìm S nha bn ok
tại k có thời gian nên chỉ giúp thế thôi
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(\Leftrightarrow S=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
- Đặt \(D=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Leftrightarrow\frac{1}{2}D=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow\frac{1}{2}D-D=\frac{1}{2^{10}}-1\)
\(\Leftrightarrow D=\frac{\frac{1}{2^{10}}-1}{-\frac{1}{2}}\)
Vậy \(3.D=3.\left(\frac{\frac{1}{2^{10}}-1}{-\frac{1}{2}}\right)=3.\frac{1023}{512}=\frac{3069}{512}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(S=\frac{3}{1}.2+\frac{3}{2}.3+....+\frac{3}{8}.9\)
\(S=3-\frac{3}{9}\)
\(S=\frac{27}{9}+\frac{3}{9}\)
\(S=\frac{30}{9}\)
\(<=>S=3\frac{1}{3}\)
S=3+3/2+3/22+....+3/29
S=3/1.2+3/2.3+...+3/8.9
S=3-3/9=18/3-3/9=12/3
\(S=3+\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^9}\)
\(\Rightarrow\frac{1}{2}S=\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+.....+\frac{3}{2^{10}}\)
\(\Rightarrow S-\frac{1}{2}S=\left(3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{3^9}\right)-\left(\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^{10}}\right)\)
\(\Rightarrow\frac{S}{2}=3-\frac{3}{2^{10}}\)
\(\Rightarrow S=\left(3-\frac{3}{2^{10}}\right).2\)\(=6-\frac{3}{2^9}\)
\(S=3\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(\Rightarrow2A-A=A=1-\frac{1}{2^9}\)
Do đó \(S=3\left(1-\frac{1}{2^9}\right)=3\left(1-\frac{1}{512}\right)=3-\frac{3}{512}=\frac{1533}{512}\)