Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
co 2n+1chia het cho n+1
suy ra 2 (n+1)-1 chia het cho n+1
suy ra 1 chia het cho n+1 (vi 2(n+1) chia het cho n+1)
suy ra n+1=1
suy ra n=0
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp chia hết cho 3
tick minh nha
0,2x-2/3(x+1)=1/3
<=>0,2x-2/3x-2/3=1/3
<=>-7/15x=1
<=>x=-15/7
Vậy..............
Hok tốt
\(0,2x-\frac{2}{3}\left(x+1\right)=\frac{1}{3}\)
\(\frac{1}{5}x-\frac{2}{3}x+\frac{2}{3}=\frac{1}{3}\)
\(\left(\frac{1}{5}-\frac{2}{3}\right)x=-\frac{1}{3}\)
\(-\frac{7}{15}x=-\frac{1}{3}\)
\(x=\frac{5}{7}\)
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
( x - 140) : 7 = 3^ 3 - 2^3. 3
( x - 140) : 7 = 27 - 24
( x - 140) : 7 = 3
( x - 140) = 3.7
( x - 140) = 21
x = 21 + 140
x = 161
(x-140):7=27-24
(x-140):7=3
x-140=21
x=161
Gọi ƯCLN (2n+1;6n+5) = d ( d thuộc N sao )
=> 2n+1 và 6n+5 đều chia hết cho d
=> 3.(2n+1) và 6n+5 đều chia hết cho d
=> 6n+3 và 6n+5 đều chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 lẻ nên d lẻ
=> d=1
=> ƯCLN (2n+1;6n+5) = 1
=> ĐPCM
k mk nha
Gọi UCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d\(\Rightarrow3\left(2n+1\right)\) chia hết cho d\(\Rightarrow6n+3\) chia hết cho d
6n+5 chia hết cho d
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)\) chia hết cho d
\(\Rightarrow2\) chia hết cho d
\(\Rightarrow d\in\left\{1,2\right\}\).Vì 2n+1 lẻ nên không chia hêt cho 2
\(\Rightarrowđpcm\)
Số các số hạng của tổng 1+3+5+7+...+(2n+1) là:
\(\left[\left(2n+1\right)-1\right]:2+1\)
\(=2n:2+1\)
\(=n+1\)
Ta có \(1+3+5+...+\left(2n+1\right)\)
\(=\left[1+\left(2n+1\right)\right].2n:2\)
\(=\left(2n+2\right).\left(2n:2\right)\)
\(=\left(2n+2\right).n\)
\(=2n^2+n\)
Mik nhầm nha, đoạn tiếp theo đây
Ta có : (1+2n+1).(n+1):2
= (n+1). (2n+2) : 2
= (n+1) . (n+1).2 : 2
= (n+1).(n+1)
= (n+1)2