K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2023

\(A=1+3^2+3^4+...+3^{98}+3^{100}\)

\(3^2\cdot A=3^2+3^4+3^6+...+3^{100}+3^{102}\)

\(9A-A=\left(3^2+3^4+3^6+...+3^{100}+3^{102}\right)-\left(1+3^2+3^4+...+3^{98}+3^{100}\right)\)

\(8A=3^{102}-1\)

\(\Rightarrow A=\dfrac{3^{102}-1}{8}\)

9 tháng 10 2023

A = 1 + 32 + 34 + ..... + 398 + 3100
3A = 3. ( 1 + 32 + 34 + ..... + 398 + 3100 )
3A = 3. 1 + 3. 32 + 3. 34 + ..... + 3. 398 + 3. 3100
3A = 32 + 33 + 34 + ..... + 3100 + 3101
3A - A = ( 32 + 33 + 34 + ..... + 3100 + 3101 ) - ( 1 + 32 + 34 + ..... + 398 + 3100 )
2A = 3101 - 1
A = ( 3101 - 1 ) : 2

3 tháng 11 2019

a, \(A=1+2+2^2+....+2^{56}\)

\(\Rightarrow2A=2\left(1+2+2^2+...+2^{56}\right)\)

\(\Rightarrow2A=2+2^2+2^3+....+2^{56}+2^{57}\)

\(\Rightarrow2A-A=2^{57}-1\)

\(\Rightarrow A=2^{57}-1\)

Câu b làm tương tự nha bạn

c, \(C=1-3+3^2-3^3+....+3^{98}-3^{99}\)

\(\Rightarrow3C=3-3^2+3^3-...-3^{98}+3^{99}-3^{100}\)

\(\Rightarrow3C+C=1-3^{100}\)

\(\Rightarrow C=\frac{1-3^{100}}{4}\)

3 tháng 11 2019

a)\(A=1+2+2^2+...+2^{56}\)

\(2A=2+2^2+2^3+2^4+...+2^{57}\)

\(2A-A=2+2^2+2^3+2^4+...+2^{57}-1-2-2^2-2^3-...-2^{56}\)

\(A=2^{57}-1\)

b)\(B=1+3^1+3^2+...+3^{100}\)

\(3B=3+3^2+3^3+...+3^{101}\)

\(3B-B=3+3^2+3^3+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2B=3^{101}-1\)

\(B=\frac{3^{101}-1}{2}\)

c)\(C=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(3C=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)

\(3C+C=1-3^{100}\)

\(\Rightarrow4C=1-3^{100}\)

\(\Rightarrow C=\frac{1-3^{100}}{4}\)

\(D=2^{100}-2^{99}-....-2^2-2^1-1\)

\(\Rightarrow2D=2^{101}-2^{100}-2^{99}-......-2^2-2^1\)

\(\Rightarrow2D-D=\left(2^{101}-2^{100}-2^{99}-.....-2^2-2^1\right)-\left(2^{100}-2^{99}-....-2^2-2^1-1\right)\)

\(\Rightarrow D=2^{101}-1\)

bài tập về nhà của Nguyễn Thành Đô, o0o I am a studious person o0o tl vô ich

5 tháng 8 2017

Ta thấy:
\(A=1\cdot3+2\cdot4+...+97\cdot99+98\cdot100\)
\(A=1\cdot\left(1+2\right)+2\cdot\left(1+3\right)+...+97\cdot\left(1+98\right)+98\cdot\left(1+99\right)\)
\(A=\left(1+1\cdot2\right)+\left(2+2\cdot3\right)+...+\left(97+97\cdot98\right)+\left(98+98\cdot99\right)\)
\(A=\left(1+2+...+97+98\right)+\left(1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\right)\)
Đặt \(B=1+2+...+97+98\) ; \(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\). Khi đó: \(A=B+C\)
* Do số các số hạng của tổng B là:    ( 98 - 1 ) : 1 + 1 = 98 ( số hạng ) nên:
\(B=1+2+...+97+98=\frac{\left(98+1\right)\cdot98}{2}=99\cdot49=4851\)
* Ta thấy:
\(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+...+97\cdot98\cdot3+98\cdot99\cdot3\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+97\cdot98\cdot\left(99-96\right)+98\cdot99\cdot\left(100-97\right)\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+97\cdot98\cdot99-96\cdot97\cdot98+98\cdot99\cdot100-97\cdot98\cdot99\)
\(\Rightarrow3\cdot C=98\cdot99\cdot100\)
\(\Rightarrow C=\frac{98\cdot99\cdot100}{3}\)
\(\Rightarrow C=98\cdot33\cdot100\)
\(\Rightarrow C=323400\)
Vậy: \(A=B+C=4851+323400=328251\)

10 tháng 1 2016

phần adễ rồi

b)B= 1+3-5-7+9-11-...-397-399

:

CÁCH 1: B=1+3-5-7+9-11-...-397-399

                   =1+3-5-7+9-11-...-397-399+401-401

                   =1+(3-5-7+9)-...-(395-397-399+401)-401

                   =1+0-0-...-0-401

                   =1-401=(-400)

 

                

 

              

13 tháng 8 2018

A = 2100 - 299 - 298 - ...-2-1

=> 2A = 2101 - 2100 - 299-...-22 - 2

=> 2A-A = 2101 - 2100 - 2100 + 1

A = 2101 - 2100.(1+1) + 1

A = 2101 - 2100. 2+1

A = 2101- 2101+1

A = 1

b) B = 1 - 5 + 52 - 53+...+598-599

=> 5B = 5 - 52+53-54+...+599-5100

=> 5B+B = -5100+1

6B = -5100+1

\(B=\frac{-5^{100}+1}{6}\)

N
2 tháng 10 2016

A=1+32+34+...398

9A=32+34+36+...+3100

9A-A=(32+34+36+...+3100)-(1+32+34+...398)

8A=3100-1

=>B-8A=3100-(3100-1)=0