Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
\(S=\) \(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)
\(-3S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)
\(-3S-S=\)\([\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(]\)\(-\)\([\)\(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)\(]\)
\(\left(-3-1\right)S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(-\)\(\left(-3\right)^0-\left(-3\right)^1-\left(-3\right)^2-...-\)\(\left(-3\right)^{2015}\)
\(-4S=\)\(\left[\left(-3\right)^1-\left(-3\right)^1\right]\)\(+\)\(\left[\left(-3\right)^2-\left(-3\right)^2\right]\)\(+\)\(...\)\(+\)\(\left[\left(-3\right)^{2015}-\left(-3\right)^{2015}\right]\)\(+\)\(\left[\left(-3\right)^{2016}-\left(-3\right)^0\right]\)
\(-4S=\)\(0+0+...+0+\left(-3\right)^{2016}-1\)
\(-4S=\)\(3^{2016}-1\)
\(S=\frac{-3^{2016}+1}{4}\)
Vậy \(S=\frac{-3^{2016}+1}{4}\)
P/s: Không chắc có đúng ko.
Hok tốt!
Vuong Dong Yet
Ta có :
\(S=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2015}\)
\(3S=\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2015}\)
\(3S-S=\left[\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2016}\right]+\left[\left(-3\right)^0+\left(-3\right)^1+...+\left(-3\right)^{2015}\right]\)
\(2S=\left(-3\right)^{2016}-\left(-3\right)^0\)
\(2S=3^{2016}-1\)
\(S=\frac{3^{2016}-1}{2}\)
Vậy \(S=\frac{3^{2016}-1}{2}\)
Chúc bạn học tốt ~
mình làm lại câu b) nha
b) |x-3|=-4
th1: x-3=-4
x=3+(-4)
x=-1
th2: x-3=4
x=3+4
x=7
b) \(\left|x-3\right|=-4\)
t/h1:\(x-3=-4\)
\(x=3-\left(-4\right)\)
\(x=7\)
t/h2:\(x-3=4\)
\(x=3-4\)
\(x=-1\)
Ta có B= (-3)0+ (-3)1+.....+(-3)2015
=> -3B= -3.[(-3)0+(-3)1+...+(-3)2015]
=> -3B= (-3)1+ (-3)2+....+(-3)2016
=> -3B-B= (-3)1 +(-3)2+....+ (-3)2016 - [(-3)0+(-3)1+....+ (-3) 2015
=> -4B= (-3)2016- (-3)1
=>-4B= (-3)2016+ 1
=> B= (-3)2016+ 1 / -4
\(a,\frac{15^3.\left(-5\right)^4}{\left(-3\right)^5.5^6}\)\(=\frac{3^3.5^3}{\left(-3\right)^5.5^2}\)\(=-\frac{5}{\left(3\right)^2}=-\frac{5}{9}\)
\(b,\frac{6^3.2.\left(-3\right)^2}{\left(-2\right)^9.3^7}\)\(=-\frac{6^3}{2^8.3^5}\)\(=-\frac{2^3.3^3}{2^8.3^5}\)\(=-\frac{1}{2^5.3^2}=-\frac{1}{288}\)
\(c,\frac{3^6.7^2-3^7.7}{3^7.21}\)\(=\frac{3^6.7\left(7-3\right)}{3^7.21}\)\(=\frac{3^6.7.4}{3^7.7.3}\)\(=\frac{4}{3.3}=\frac{4}{9}\)
\(a,\left(x-1,2\right)^2=4\)
\(\Rightarrow x-1,2=2\)
\(\Rightarrow x=3,2\)
\(b,\left(x+1\right)^3=-125\)
\(\Rightarrow\left(x+1\right)^3=\left(-5\right)^3\)
\(\Rightarrow x+1=-5\Rightarrow x=-6\)
\(c,\left(x-5\right)^3=2^6\)
\(\Rightarrow\left(x-5\right)^3=4^3\)
\(\Rightarrow x-5=4\Rightarrow x=9\)
\(d,\left(2x+1\right)^{x+1}=5^{x+1}\)
\(\Rightarrow2x+1=5\Rightarrow x=2\)
Tính tổng : S = \(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2004}\)
\(S=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2004}\)
\(\left(-3\right)S=\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2005}\)
\(\left(-3\right)S-S=\left[\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2005}\right]-\left[\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2004}\right]\)\(\left(-2\right)S=\left(-3\right)^{2005}-\left(-3\right)^0\)
\(S=\dfrac{\left(-3\right)^{2005}-1}{-2}\)