\(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

S=(-3)0+(-3)1+(-3)2+...+(-3)2014 ( có 2015 số hạng )

S=1+(-3)+3+...+3 ( có 2014 số 3 )

=>S=1+[(-3)+3]+[(-3)+3]+...+[(-3)+3]

S=1+0+0+...+0

S=1

21 tháng 2 2020

Trả lời:

\(S=\) \(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)

\(-3S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)

\(-3S-S=\)\([\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(]\)\(-\)\([\)\(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)\(]\)

\(\left(-3-1\right)S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(-\)\(\left(-3\right)^0-\left(-3\right)^1-\left(-3\right)^2-...-\)\(\left(-3\right)^{2015}\)

\(-4S=\)\(\left[\left(-3\right)^1-\left(-3\right)^1\right]\)\(+\)\(\left[\left(-3\right)^2-\left(-3\right)^2\right]\)\(+\)\(...\)\(+\)\(\left[\left(-3\right)^{2015}-\left(-3\right)^{2015}\right]\)\(+\)\(\left[\left(-3\right)^{2016}-\left(-3\right)^0\right]\)

\(-4S=\)\(0+0+...+0+\left(-3\right)^{2016}-1\)

\(-4S=\)\(3^{2016}-1\)

\(S=\frac{-3^{2016}+1}{4}\)

Vậy \(S=\frac{-3^{2016}+1}{4}\)

P/s: Không chắc có đúng ko. 

Hok tốt!

Vuong Dong Yet

28 tháng 3 2018

Ta có : 

\(S=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2015}\)

\(3S=\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2015}\)

\(3S-S=\left[\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2016}\right]+\left[\left(-3\right)^0+\left(-3\right)^1+...+\left(-3\right)^{2015}\right]\)

\(2S=\left(-3\right)^{2016}-\left(-3\right)^0\)

\(2S=3^{2016}-1\)

\(S=\frac{3^{2016}-1}{2}\)

Vậy \(S=\frac{3^{2016}-1}{2}\)

Chúc bạn học tốt ~ 

28 tháng 3 2018

= (-3)2016 -1

14 tháng 1 2016

s = \(\left(-3\right)^{2016}-\left(-3\right)^0\)

1: \(\left(\dfrac{1}{2}\right)^{27}=\left(\dfrac{1}{8}\right)^9\)

\(\left(\dfrac{1}{3}\right)^{18}=\left(\dfrac{1}{9}\right)^9\)

mà 1/8>1/9

nên \(\left(\dfrac{1}{2}\right)^{27}>\left(\dfrac{1}{3}\right)^{18}\)

2: \(\dfrac{-4}{7}=\dfrac{-32}{56}\)

\(\dfrac{-5}{8}=\dfrac{-35}{56}\)

mà -32>-35

nên \(\dfrac{-4}{7}>\dfrac{-5}{8}\)

hay \(\left(\dfrac{-4}{7}\right)^{205}>\left(-\dfrac{5}{8}\right)^{205}\)

27 tháng 11 2018

Ta có B= (-3)0+ (-3)1+.....+(-3)2015

=> -3B= -3.[(-3)0+(-3)1+...+(-3)2015]

=> -3B= (-3)1+ (-3)2+....+(-3)2016

=> -3B-B= (-3)1 +(-3)2+....+ (-3)2016 - [(-3)0+(-3)1+....+ (-3) 2015

=> -4B= (-3)2016- (-3)1

=>-4B= (-3)2016+ 1

=> B= (-3)2016+ 1 / -4

27 tháng 11 2018

Mình nhầm, -4B= (-3)2016- (-3)0

tính a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\) b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\) c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\) d)...
Đọc tiếp

tính

a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)

b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)

c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)

e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)

f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)

h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)

3
7 tháng 10 2017

c)

Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)

7 tháng 10 2017

d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\dfrac{1}{4}:2\)

\(=3-1+\dfrac{1}{8}\)

\(=\dfrac{17}{8}\)