Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S= \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
S= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 -1/6 +1/6 - 1/7 + 1/7 - 1/8
S= 1/2 - 1/ 8
S= 3/8
S= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
= 1/2 - 1/3 + 1/3 - ...+ 1/7 - 1/8
= 1/2 - 1/8
= 3/8
A = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8
A = 1 + ( -1/2 + 1/2 ) + ( -1/3 + 1/3 ) + ( -1/4 + 1/4 ) + ( -1/5 + 1/5 ) + ( -1/6 + 1/6 ) + ( -1/7 + 1/7 ) - 1/8
A = 1 + 0 + 0 + 0 + 0 + 0 + 0 - 1/8
A = 1 - 1/8
A = 7/8
* Sửa đề tí nhé
B = 3/2 - 5/6 + 7/12 - 9/20 + 11/30 - 13/42 + 15/56
B = 3/1.2 - 5/2.3 + 7/3.4 - 9/4.5 + 11/5.6 - 13/6.7 + 15/7.8
B = 3 - 3/2 - 5/2 - ( -5/3 ) + 7/3 - 7/4 - 9/4 - ( -9/5 ) + 11/5 - 11/6 - 13/6 - ( -13/7 ) + 15/7 - 15/8
B = 3 - 3/2 - 5/2 + 5/3 + 7/3 - 7/4 - 9/4 + 9/5 + 11/5 - 11/6 - 13/6 + 13/7 + 15/7 - 15/8
B = 3 + ( -3/2 - 5/2 ) + ( 5/3 + 7/3 ) + ( -7/4 - 9/4 ) + ( 9/5 + 11/5 ) + ( -11/6 - 13/6 ) + ( 13/7 + 15/7 ) - 15/8
B = 3 + -4 + 4 + -4 + 4 + -4 + 4 - 15/8
B = 3 + 0 + 0 + 0 - 15/8
B = 3 - 15/8
B = 9/8
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+......+\frac{1}{56}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{7.8}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{7}-\frac{1}{8}\)
\(=1-\frac{1}{8}\)
\(=\frac{7}{8}\)
A = 1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 71/72
A = ( 1 - 1/2 ) + ( 1 - 1/6 ) + ( 1 - 1/12 ) + ( 1 - 1/20 ) + ( 1 - 1/30 ) + ( 1 - 1/42 ) + ( 1 - 1/56 ) + ( 1 - 1/72 )
A = 1 x 8 - ( 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 )
A = 8 - ( \(\frac{1}{1\cdot2} +\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\))
A = \(8-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
A = \(8-\left(1-\frac{1}{9}\right)\)
\(A=8-\frac{8}{9}\)
\(A=\frac{64}{9}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\\ =\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
Theo đề ra, ta có:
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}-\dfrac{1}{6}\right)+\left(\dfrac{1}{6}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{8}\right)\)
\(=\dfrac{1}{2}+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(-\dfrac{1}{6}+\dfrac{1}{6}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)-\dfrac{1}{8}\)
\(=\dfrac{1}{2}+0+0+0+0+0-\dfrac{1}{8}\)
\(=\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{4}{8}-\dfrac{1}{8}=\dfrac{3}{8}\)
Chúc bạn học tốt!
Đặt \(A=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(A=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(A=\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
−190−172−156−142−130−120−112−16−12−190−172−156−142−130−120−112−16−12
=−190−(12+16+112+120+130+142+156+172)=−190−(12+16+112+120+130+142+156+172)
=−190−(11.2+12.3+13.4+14.5+15.6+16.7+17.8+18.9)=−190−(11.2+12.3+13.4+14.5+15.6+16.7+17.8+18.9)
=−190−(1−12+12−13+13−14+14−15+15−16+16−17+17−18+18−19)=−190−(1−12+12−13+13−14+14−15+15−16+16−17+17−18+18−19)
=−190−(1−19)=−190−(1−19)
=−190−89=−190−89
=−910
\(\frac{-1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
= \(-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
=\(-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
=\(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
=\(-\left(1-\frac{1}{10}\right)=-\left(\frac{9}{10}\right)=-\frac{9}{10}\)
\(\frac{-1}{90}-\frac{-1}{72}-\frac{-1}{56}-\frac{-1}{42}-\frac{-1}{30}-\frac{-1}{20}-\frac{-1}{12}-\frac{-1}{6}-\frac{-1}{2}\)
\(=\frac{-1}{10.9}-\frac{-1}{9.8}-\frac{-1}{8.7}-\frac{-1}{7.6}-\frac{-1}{6.5}-\frac{-1}{5.4}-\frac{-1}{4.3}-\frac{-1}{3.2}-\frac{-1}{2.1}\)
Đặt:
A=\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
A=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
A=1-\(\dfrac{1}{8}\)
A=\(\dfrac{7}{8}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{56}=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}=\dfrac{7}{8}\)
Vậy...