K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2024

S = 1/5.6 + 1/10.9+....+ 1/3350.2013

=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)

=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)

= 1/15 .( 1 - 1/671 )

= 1/15 .670/671

=134/2013

24 tháng 4 2024

S = 1/5.6 + 1/10.9+....+ 1/3350.2013

=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)

=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)

= 1/15 .( 1 - 1/671 )

= 1/15 .670/671

=134/2013

7 tháng 4 2015

H=\(\frac{1\cdot2\cdot3+2\cdot4\cdot6+3\cdot6\cdot9+5\cdot10\cdot15}{1\cdot3\cdot6+2\cdot6\cdot12+3\cdot9\cdot18+5\cdot15\cdot30}=\frac{1.2.3+2^3.\left(1.2.3\right)+3^3.\left(1.2.3\right)+5^3.\left(1.2.3\right)}{1.3.6+2^3.\left(1.3.6\right)+3^3.\left(1.3.6\right)+5^3.\left(1.3.6\right)}=\frac{1.2.3.\left(1+2^3+3^3+5^3\right)}{1.3.6.\left(1+2^3+3^3+5^3\right)}=\frac{2}{6}=\frac{1}{3}\)

7 tháng 4 2015

\(\frac{4}{3}\)

24 tháng 4 2024

S = 1/5.6 + 1/10.9+....+ 1/3350.2013

=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)

=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)

= 1/15 .( 1 - 1/671 )

= 1/15 .670/671

=134/2013

24 tháng 4 2024

S = 1/5.6 + 1/10.9+....+ 1/3350.2013

=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)

=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)

= 1/15 .( 1 - 1/671 )

= 1/15 .670/671

=134/2013

24 tháng 4 2024

S = 1/5.6 + 1/10.9+....+ 1/3350.2013

=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)

=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)

= 1/15 .( 1 - 1/671 )

= 1/15 .670/671

=134/2013

3 tháng 4 2016

\(\frac{1}{3.6}-\frac{1}{6.9}+\frac{1}{6.9}-\frac{1}{9.12}+....+\frac{1}{23.26}-\frac{1}{26.29}\)

\(\frac{1}{3.6}-\frac{1}{26.29}\)

\(\frac{23}{26}\).

28 tháng 6 2017

CÂU 1 = -59/111

 CÂU 2 = 11/63

     

28 tháng 6 2017

cảm ơn kết quả thì mik b òi nhưng mik cần cách làm

11 tháng 6 2020

S = \(\frac{1}{5.6}+\frac{1}{10.9}+\frac{1}{15.12}+...+\frac{1}{3350.2013}=\frac{1}{5.3}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{670.671}\right)\)

\(=\frac{1}{15}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{670}-\frac{1}{671}\right)=\frac{1}{15}\left(1-\frac{1}{671}\right)=\frac{1}{15}.\frac{670}{671}\)

\(=\frac{134}{2013}\)

7 tháng 5 2016

Đặt dãy trên là A

Khi đó \(A=\frac{2}{6\times10}+\frac{2}{7\times9}+\frac{1}{64}\)

\(A=\frac{1}{30}+\frac{2}{63}+\frac{1}{64}\)

\(A=\frac{672}{20160}+\frac{640}{20160}+\frac{315}{20160}=\frac{1627}{20160}\)

7 tháng 5 2016

Nguyenhoangtien sai bét

3 tháng 5 2018

a) \(A=\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+...+\frac{1}{25\cdot27\cdot29}\)

   \(\Rightarrow4A=\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+...+\frac{4}{25\cdot27\cdot29}\)

\(\Rightarrow4A=\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5\cdot7}+...+\frac{1}{25\cdot27}-\frac{1}{27\cdot29}\)

\(\Rightarrow4A=\frac{1}{1\cdot3}-\frac{1}{27\cdot29}=\frac{1}{3}-\frac{1}{783}=\frac{261}{783}-\frac{1}{783}=\frac{260}{783}\)

\(\Rightarrow A=\frac{\frac{260}{783}}{4}=\frac{65}{783}\)

b) \(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)

\(\Rightarrow100\cdot\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)x=100\cdot\left(\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\right)\)

\(\Rightarrow\left(\frac{100}{1\cdot101}+\frac{100}{2\cdot102}+...+\frac{100}{10\cdot110}\right)x=10\cdot\left(\frac{10}{1\cdot11}+\frac{10}{2\cdot12}+...+\frac{10}{100\cdot110}\right)\)

\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=10\cdot\left(1-\frac{1}{10}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)

\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=10\cdot\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)\)

\(\Rightarrow x=10\cdot\)

12 tháng 3 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{2014}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)\)

\(=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\)

\(B=\frac{1}{1008.2014}+\frac{1}{1009.2013}+...+\frac{1}{2014.1008}\)

\(=\frac{1}{3022}\left(\frac{3022}{1008.2014}+\frac{3022}{1009.2013}+...+\frac{3022}{2014.1008}\right)\)

\(=\frac{1}{3022}\left(\frac{1008}{1008.2014}+\frac{2014}{1008.2014}+...+\frac{2014}{1008.2014}+\frac{1008}{1008.2014}\right)\)

\(=\frac{1}{3022}\left(\frac{1}{1008}+\frac{1}{2014}+\frac{1}{1009}+\frac{1}{2013}+...+\frac{1}{2014}+\frac{1}{1008}\right)\)

\(=\frac{2}{3022}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)\)

\(=\frac{1}{1511}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)\)

=> \(\frac{A}{B}=\frac{\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}}{\frac{1}{1511}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)}=\frac{1}{\frac{1}{1511}}=1511\)

Vậy....