Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Viết các tổng sau thành bình phương của 1 số tự nhiên
A. 5 3 + 62 + 8
B . 2 + 32+ 42 + 132
Bài 2 : So sánh các số sau
A . 320 và 274
Ta có : 274 = (32)4 = 38
Vì 20 < 8 => 320 > 274
( Những câu còn lại tương tự ) - Tự làm nhé ! Mình bận ~
# Dương
1) Từ 1 đến 100 có tất cả 100 số số hạng
=> 1+2+3+....+99+100=\(\frac{\left(100+1\right)\cdot100}{2}=5050\)
=> A=5050
2) Từ 1 đến 99 có tất cả: (99-1) : 2 +1=50 số hạng
=> 1+3+5+7+....+97+99=\(\frac{\left(99+1\right)\cdot50}{2}=2500\)
=> B=250
3) làm tương tự
4) S=\(1+2+2^2+2^3+...+2^9\)
\(2S=2+2^2+2^3+2^4+....+2^{10}\)
\(2S-S=2^{10}-1\)
\(\Rightarrow S=2^{10}-1\)
5) làm tương tự
A=1+2+3+...+99+100
Số số hạng của dãyA là:
(100-1):1+1=100(số hạng)
Tổng của dãy A là :
(100+1).100:2=5050
B=1+3+5+...+97+99
Số số hạng của dãy B là:
(99-1):2+1=50 (số hạng)
Tổng của dãy B là:
(99+1).50:2=250
C=2+4+6+...+98+100
Số số hạng của dãy C là:
(100-2):2+1=50(số hạng)
Tổng của dãy C là:
(100+2).50:2=2550
S=1+2+22+23+...+29
2S= 2+22+23+...+29+210
2S-S=1-210
S=1-210
M=1+3+32+33+...+39
3M=3+32+33+...+39+310
3M-M=1-310
2M=1-310
M=(1-310):2
1. 53 = 5.5.5 = 125
2. 27 = 2.2.2.2.2.2.2 = 128
3. 44 = 4.4.4.4 = 256
4. 73 = 7.7.7 = 343
6. 35 = 243
7. 26 = 64
8. 34 = 81
9. 83 = 512
11. 132 = 169
12. 112 = 121
13. 142 = 196
14. 152 = 225
16. 172 = 289
17. 182 = 324
18. 192 = 361
19. 202 = 400
21. 104 = 10000
22. 105 = 100000
23. 106 = 1000000
24. 107 = 10000000
2 mũ 3 =8
2 mũ 4=16
2 mũ 5=32
2 mũ 6=64
2 mũ 7=128
2 mũ 8=256
2 mũ 9=512
2 mũ 10=1024
a,\(2^4\cdot3^5:6^4\)
\(=\frac{2^4\cdot3^6}{\left(2\cdot3\right)^4}\)
\(=\frac{2^4\cdot3^6}{2^4\cdot3^4}\)
\(=3^2\)
Bài 2
\(a,5^3\cdot8=5^3\cdot2^3=10^3=1000\)
\(b,2^5-2019^0=32-1=31\)
\(c,3^3+2^5-1^{10}=27+32-1=58\).
\(d,9^2\cdot33-81\cdot23+5^2=81\cdot33-81\cdot23+25\)
\(=81\cdot\left(33-23\right)+25\)
\(=810+25=835\)
\(g,\left[2^2+6^2\right]:5+11^2\)
\(=\left[4+36\right]:5+121\)
\(=40:5+121=8+121\)
\(=129\)
\(d,\frac{14\cdot3^{10}-5\cdot3^{10}}{3^{12}}\)
\(=\frac{3^{10}\cdot\left(14-5\right)}{3^{12}}\)
\(=\frac{3^{10}\cdot9}{3^{12}}\)
\(=\frac{3^{10}\cdot3^2}{3^{12}}=\frac{3^{12}}{3^{12}}\)
\(=1\)
\(2S=2+2^2+...+2^{11}\)
\(2S-S=S=\left(2+2^2+....+2^{11}\right)-\left(1+2+.....+2^{10}\right)\)
\(S=2^{11}-1\)