Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{12+x}{43-x}=\frac{2}{3}\)\(\Rightarrow3\left(12+x\right)=2\left(43-x\right)\)
\(\Rightarrow36+3x=86-2x\)
\(\Rightarrow36+3x-86+2x=0\)
\(\Rightarrow5x=50\)
\(\Rightarrow x=10\)
\(\frac{12+x}{43-x}=\frac{2}{3}\)
\(\frac{\left(12+x\right)\times3}{\left(43-x\right)\times3}=\frac{2\times\left(43-x\right)}{3\times\left(43-x\right)}\)
\(\left(12+x\right)\times3=2\times\left(43-x\right)\)
\(36+x\times3=86-2\times x\)
\(x\times3+2\times x=86-36\)
\(x\times5=50\)
\(x=50\div5\)
\(x=10\)
a.\(\frac{1}{6}.6^x+6^x.36=6^{15}\left(1+6^3\right)\)
\(6^x.\frac{217}{6}=6^{15}.217\)
\(6^x=6^{16}\)
\(x=16\)
\(\left|x-\frac{1}{3}\right|+\left|x-y\right|=0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{3}=0\\x-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{1}{3}\\x=y\end{cases}\)\(\Leftrightarrow x=y=\frac{1}{3}\)
64=8.8=82
169=13.13=132
196=14.14=142
Mẹo nhỏ: Chữ số tận cùng là 4 sẽ là bình phương của số có tận cùng là 2 hoặc 8
Chữ số tận cùng là 9 sẽ là bình phương của những số có tận cùng là 3
Chữ số tận cùng là 6 khi bình phương của những số là 2; 4;6
a) Xét: \(1-\frac{3}{4}=\frac{1}{4}\); \(1-\frac{97}{98}=\frac{1}{98}\)
Vì \(\frac{1}{4}>\frac{1}{98}\) nên \(\frac{3}{4}< \frac{97}{98}\)
b) Xét: \(1-\frac{42}{43}=\frac{1}{43}\); \(1-\frac{112}{113}=\frac{1}{113}\)
Vì \(\frac{1}{43}>\frac{1}{113}\) nên \(\frac{42}{43}< \frac{112}{113}\)
Theo đề bài ta có :
\(A=\frac{n+1}{n-1}=\frac{1}{2}\)
\(\Leftrightarrow2\left(n+1\right)=n-1\)
\(\Leftrightarrow2n+2=n-1\)
\(\Leftrightarrow2n-n=-1-2\)
\(\Rightarrow n=-3\)
Vậy với n = - 3 thì A = \(\frac{1}{2}\)
minh lam bai nay roi nhung minh ko co nha nen minh ko nho
Ta có: \(\frac{a}{b}< \frac{a+1}{b+1}\)
\(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}=\frac{10^{2012}+1}{2^{2013}+1}=A\)
Vậy: \(A>B\)
Ta có:
\(10A=\frac{10\left(10^{2012}+1\right)}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=\frac{10^{2013}+1}{10^{2013}+1}+\frac{9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)
\(10B=\frac{10\left(10^{2013}+1\right)}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=\frac{10^{2014}+1}{10^{2014}+1}+\frac{9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)
Vì 102013+1<102014+1
\(\Rightarrow\frac{9}{10^{2013}+1}>\frac{9}{10^{2014}+1}\)
\(\Rightarrow1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
Ta có :
\(B=\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot2}+\frac{1}{2\cdot15}+\frac{13}{15\cdot4}\)
\(=>\frac{B}{7}=\frac{5}{2\cdot7}+\frac{4}{7\cdot11}+\frac{3}{11\cdot14}+\frac{1}{14\cdot15}+\frac{13}{15\cdot28}\)
\(=>\frac{B}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(=>\frac{B}{7}=\frac{1}{2}-\frac{1}{28}=\frac{14}{28}-\frac{1}{28}=\frac{13}{28}\)
\(=>B=\frac{13}{28}\cdot7=\frac{13}{4}\)
Đặt \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
\(3A=3\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\right)\)
\(3A=3+1+...+\frac{1}{3^4}\)
\(3A-A=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)
\(2A=3-\frac{1}{3^5}\)
\(A=\frac{3-\frac{1}{3^5}}{2}\)
Đặt \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(S=1+\frac{1}{1\times3}+\frac{1}{3\times3}+\frac{1}{9\times3}+\frac{1}{27\times3}+\frac{1}{81\times3}\)
\(S\times3=\left(1+\frac{1}{1\times3}+\frac{1}{3\times3}+\frac{1}{9\times3}+\frac{1}{27\times3}+\frac{1}{81\times3}\right)\times3\)
\(S\times3=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
Xét: \(S\times3-S=\left(3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)-\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(S\times2=3-\frac{1}{243}\)
\(S\times2=\frac{728}{243}\)
\(S=\frac{728}{243}\div2\)
\(S=\frac{364}{243}\)
Vậy \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{364}{243}\)