K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Ta có :

\(S=\left(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\frac{31}{32}+\frac{63}{64}+\frac{127}{128}\right)-6\)

\(S=\left(\frac{64}{128}+\frac{102}{128}+\frac{112}{128}+\frac{120}{128}+\frac{124}{128}+\frac{126}{128}+\frac{127}{128}\right)-6\)

\(S=\frac{64+102+112+120+124+126+127}{128}-6\)

\(S=\frac{775}{128}-6\)

\(S=\frac{775}{128}-\frac{768}{128}\)

\(S=\frac{7}{128}\)

18 tháng 6 2017

S=1/2+3/4+7/8+15/16+31/32+63/64+127/128 -6

S= 1-1/2 + 1-1/4 + 1-1/8 + 1-1/16 + 1-1/32 + 1-1/64+ 1-1/128 - 6

S= (1+1+1+1+1+1+1-6)- (1/2+1/4+1/8+1/16 + 1/32+1/64+1/128)

S= 1- 111/128

S= 17/128

(Làm lụi nha bn)

22 tháng 7 2018

Q=\(\dfrac{1}{2}+\left(\dfrac{3}{4}+\dfrac{7}{8}\right)+\left(\dfrac{15}{16}+\dfrac{31}{32}\right)+\left(\dfrac{63}{64}+\dfrac{127}{128}\right)-6\)

Q=\(\dfrac{1}{2}+\dfrac{13}{8}+\dfrac{61}{32}+\dfrac{253}{128}\)\(-6\)

Q= \(\dfrac{64}{128}+\dfrac{208}{128}+\dfrac{244}{128}+\dfrac{253}{128}-6\)

Q= \(\dfrac{769}{128}-6\)

Q=\(\dfrac{769}{128}-\dfrac{768}{128}\)

Q= \(\dfrac{1}{128}\)

15 tháng 3 2020

S1\(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+...+\frac{127}{128}\)

2S= 1 + \(\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\frac{31}{16}+\frac{63}{32}+\frac{127}{64}\)
2S1 - S1 = S1 = 1 + (1 + 1 + 1 + 1 + 1 + 1) - \(\frac{127}{128}\)= 6 + \(\frac{1}{128}\)
=> S = S1 - 6 = 6 + \(\frac{1}{128}\)- 6 = \(\frac{1}{128}\)

\(S=\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\frac{31}{32}+\frac{63}{64}+\frac{127}{128}-6\)

\(S=\frac{1}{2}+\left(\frac{3}{4}+\frac{7}{8}\right)+\left(\frac{15}{16}+\frac{31}{32}\right)+\left(\frac{63}{64}+\frac{127}{128}\right)-6\)

\(S=\frac{1}{2}+\frac{13}{8}+\frac{61}{32}+\frac{253}{128}-6\)

\(S=\frac{64}{128}+\frac{208}{128}+\frac{244}{128}+\frac{253}{128}-6\)

\(S=\frac{769}{128}-6\)

\(S=\frac{769}{128}-\frac{768}{128}\)

\(S=\frac{1}{128}\)

hok tốt!!

10 tháng 8 2020

\(S=1+\frac{1}{2}+1+\frac{1}{4}+1+\frac{1}{8}+1+\frac{1}{16}+1+\frac{1}{32}+1+\frac{1}{64}-7\)

\(S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}-1\)

Ta đặt:    \(P=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

=> \(2P=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)

=> \(2P-P=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)

=> \(P=1-\frac{1}{64}\)

Mà    \(S=P-1\)

=> \(S=1-\frac{1}{64}-1=-\frac{1}{64}\)

Vậy \(S=-\frac{1}{64}\)

7 tháng 7 2019

Đặt A =\(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+...+\frac{127}{128}-6\)

\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{128}\right)-6\)

\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{2^3}\right)+...+\left(1-\frac{1}{2^7}\right)-6\)(7 cặp số)

\(1-\frac{1}{2}+1-\frac{1}{2^2}+1-\frac{1}{2^3}+...+1-\frac{1}{2^7}-6\)

\(\left(1+1+1+...+1\right)-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^7}-6\)

\(1.7-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)-6\)

\(7-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)-6\)

\(7-6-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)

\(1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)

=> 2A = \(2-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)

Lấy 2A - A = \(\left(2-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\right)-\left(1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\right)\)

              A  = \(2-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^6}-1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)

                  = \(2-1-1+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^6}\right)\)

                  = \(0+\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^3}+...+\frac{1}{2^6}-\frac{1}{2^6}+\frac{1}{2^7}\right)\)

                  = \(0+\frac{1}{2^7}\)

                  = \(\frac{1}{2^7}\)

21 tháng 7 2018

\(A=\frac{14^{16}-21^{32}.35^{68}}{10^{16}.15^2.7^{96}}=\frac{2^{16}.7^{16}-3^{32}.7^{32}.7^{68}.5^{68}}{5^{16}.2^{16}.3^2.5^2.7^{96}}\)

\(A=\frac{2^{16}.7^{16}-3^{32}.7^{100}.5^{68}}{5^{18}.2^{16}.3^2.7^{96}}=\frac{7^{16}.\left(2^{16}-3^{32}.7^{84}.5^{68}\right)}{5^{18}.2^{16}.3^2.7^{96}}=\frac{2^{16}-3^{32}.7^{84}.5^{68}}{5^{18}.2^{16}.3^2.7^{88}}\)

\(B=\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\frac{2^{40}-2^{20}+2^{20}.3^{20}}{2^{20}.3^{20}-3^{20}+3^{40}}=\frac{2^{20}.\left(2^{20}-1+3^{20}\right)}{3^{20}.\left(2^{20}-1+3^{20}\right)}\)

\(B=\frac{2^{20}}{3^{20}}\)

Giúp mk nha , mk cần gấp lắm