Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tổng
S=\(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+........+\left(-3\right)^{2015}\)
Trả lời:
\(S=\) \(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)
\(-3S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)
\(-3S-S=\)\([\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(]\)\(-\)\([\)\(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)\(]\)
\(\left(-3-1\right)S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(-\)\(\left(-3\right)^0-\left(-3\right)^1-\left(-3\right)^2-...-\)\(\left(-3\right)^{2015}\)
\(-4S=\)\(\left[\left(-3\right)^1-\left(-3\right)^1\right]\)\(+\)\(\left[\left(-3\right)^2-\left(-3\right)^2\right]\)\(+\)\(...\)\(+\)\(\left[\left(-3\right)^{2015}-\left(-3\right)^{2015}\right]\)\(+\)\(\left[\left(-3\right)^{2016}-\left(-3\right)^0\right]\)
\(-4S=\)\(0+0+...+0+\left(-3\right)^{2016}-1\)
\(-4S=\)\(3^{2016}-1\)
\(S=\frac{-3^{2016}+1}{4}\)
Vậy \(S=\frac{-3^{2016}+1}{4}\)
P/s: Không chắc có đúng ko.
Hok tốt!
Vuong Dong Yet
Ta có :
\(S=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2015}\)
\(3S=\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2015}\)
\(3S-S=\left[\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2016}\right]+\left[\left(-3\right)^0+\left(-3\right)^1+...+\left(-3\right)^{2015}\right]\)
\(2S=\left(-3\right)^{2016}-\left(-3\right)^0\)
\(2S=3^{2016}-1\)
\(S=\frac{3^{2016}-1}{2}\)
Vậy \(S=\frac{3^{2016}-1}{2}\)
Chúc bạn học tốt ~
Ta có B= (-3)0+ (-3)1+.....+(-3)2015
=> -3B= -3.[(-3)0+(-3)1+...+(-3)2015]
=> -3B= (-3)1+ (-3)2+....+(-3)2016
=> -3B-B= (-3)1 +(-3)2+....+ (-3)2016 - [(-3)0+(-3)1+....+ (-3) 2015
=> -4B= (-3)2016- (-3)1
=>-4B= (-3)2016+ 1
=> B= (-3)2016+ 1 / -4
Tính tổng : S = \(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2004}\)
\(S=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2004}\)
\(\left(-3\right)S=\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2005}\)
\(\left(-3\right)S-S=\left[\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2005}\right]-\left[\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2004}\right]\)\(\left(-2\right)S=\left(-3\right)^{2005}-\left(-3\right)^0\)
\(S=\dfrac{\left(-3\right)^{2005}-1}{-2}\)
\(A=\left(\frac{3}{4}\right)^{-4}.\left(\frac{-2}{3}\right)^{-3}\)
\(A=\frac{256}{81}.\frac{-27}{8}\)
\(A=\frac{729}{64}\)
\(B=\left(4^3\right)^{-2}.a^{2015}\)
\(B=64^{-2}.a^{2015}\)
\(B=\frac{1}{4096}.a^{2015}\)
\(C=\left[\left(\frac{-1}{3}\right).\frac{2}{5}.\left(\frac{-3}{4}\right)\right]^3\)
\(C=\left[\frac{1}{10}\right]^3\)
\(C=\frac{1}{1000}\)