K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

 ta có :

S = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

S x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

S x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

S x 3 = 99x100x101

S = 99x100x101 : 3

S = 333300

7 tháng 5 2017

\(=\frac{1.2}{99.100}\)

\(=\frac{2}{9900}=\frac{1}{4950}\)

29 tháng 3 2018

\(\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{99.100}\)

\(=2.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(=2.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=2.\left(1-\dfrac{1}{100}\right)=2.\dfrac{99}{100}=\dfrac{99}{50}\)

19 tháng 1 2019

Đặt A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

=> A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=> A = 1 - \(\dfrac{1}{100}\) = \(\dfrac{99}{100}\)

=> 1 = \(\dfrac{100}{100}\)

=> A < 1

18 tháng 6 2019

A = 11.2+12.3+13.4+...+199.10011.2+12.3+13.4+...+199.100

=> A = 1−12+12−13+13−14+...+199−11001−12+12−13+13−14+...+199−1100

=> A = 1 - 11001100 = 9910099100

=> 1 = 100100100100

=> A < 1

19 tháng 4 2017

\(\Rightarrow A=5\left(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}\right)\)

\(\Rightarrow A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A=5\left(1-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{5x99}{100}=\frac{99}{20}\)

19 tháng 4 2017

\(A=\frac{5}{1}-\frac{5}{2}+\frac{5}{2}-\frac{5}{3}+\frac{5}{3}-\frac{5}{4}+....+\frac{5}{99}-\frac{5}{100}\)

\(A=\frac{5}{1}+\left(-\frac{5}{2}+\frac{5}{2}\right)+\left(-\frac{5}{3}+\frac{5}{3}\right)+\left(-\frac{5}{4}+\frac{5}{4}\right)+...\left(-\frac{5}{99}+\frac{5}{99}\right)+\frac{5}{100}\)

\(A=\frac{5}{1}+0+0+....+0+\frac{5}{100}\)

\(A=\frac{500}{100}+\frac{5}{100}=\frac{205}{100}=\frac{101}{20}\)

Đúng 100%

Đúng 100%

Đúng 100%

17 tháng 3 2016

Ta có: 

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)

19 tháng 4 2016

A = 5(1/1.2 + 1/2.3 +......+ 1/99.100)

A = 5( 1 - 1/2 + 1/2 - 1/3 +........+ 1/99 - 1/100)

A = 5( 1 - 1/100)

A = 5 . 99/100

A = 99/20

** k mk nha!

19 tháng 4 2016

\(\frac{5}{1\times2}+\frac{5}{2\times3}+...+\frac{5}{99\times100}=5\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\right)=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5\times\frac{99}{100}=\frac{99}{20}=4\frac{19}{20}\)

14 tháng 3 2016

Mk nghĩ A>2