Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tử số của S là \(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)
\(A=1-2^{2016}\)
=> \(S=\frac{1-2^{2016}}{1-2^{2016}}=1\)
a) S1 = 1 + (-2) + 3 + (-4) + ... + (-2014) + 2015
S1 = [1 + (-2)] + [3 + (-4)] + ... + [2013 + (-2014)] + 2015
S1 = (-1) + (-1) + ... + (-1) + 2015
2014 : 2 = 1007
S1 = (-1) . 1007 + 2015
S1 = (-1007) + 2015
S1 = 1008
b) S2 = (-2) + 4 + (-6) + 8 + ... + (-2014) + 2016
S2 = [(-2) + 4] + [(-6) + 8] + ... + [(-2014) + 2016]
S2 = 2 + 2 + ... 2
2016 : 2 = 1008
S2 = 2 . 1008
S2 = 2016
c) S3 = 1 + (-3) + 5 + (-7) + ... + 2013 + (-2015)
S3 = [1 + (-3)] + [5 + (-7)] + ... + [2013 + (-2015)]
S3 = (-2) + (-2) + ... + (-2)
(2015 - 1) : 2 + 1 = 1008 : 2 = 504
S3 = (-2) . 504
S3 = -1008
d) S4 = (-2015) + (-2014) + (-2013) + ... + 2015 + 2016
S4 = 2016 + [(-2015) + 2015] + [(-2014) + 2014] + ... + [(-1) + 1] + 0
S4 = 2016 + 0
S4 = 2016
a, \(S_1=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\\ =1+\left[\left(-2\right)+3\right]+\left[\left(-4\right)+5\right]+...+\left[\left(-2014\right)+2015\right]\\ =1+1+...+1=1008\)
b, làm tương tự phần a
c, cũng làm tương tự
d, \(S_4=\left(-2015\right)+\left(-2014\right)+...+2015+2016\\ =\left[\left(-2015\right)+2015\right]+\left[\left(-2014\right)+2014\right]+...+\left[\left(-1\right)+1\right]+0+2016\\ =0+0+...+0+2016=2016\)