Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(A=\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{1}{93.97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\frac{96}{97}=\frac{24}{97}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(A=\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{1}{93.97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\frac{96}{97}=\frac{24}{97}\)
\(\dfrac{12}{1\cdot5}+\dfrac{12}{5\cdot9}+...+\dfrac{12}{97\cdot101}\)
\(=3\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{97\cdot101}\right)\)
\(=3\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
=3*100/101
=300/101
- \(B=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(4.B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{93.97}\)
\(4.B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\)
\(4.B=1-\frac{1}{97}\)
\(4.B=\frac{96}{97}\)
\(B=\frac{96}{97}:4\)
\(B=\frac{24}{97}\)
\(A=\frac{12}{1.5}+\frac{12}{5.9}+\frac{12}{9.13}+.............+\frac{12}{101.105}\)
\(=3.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+............+\frac{4}{101.105}\right)\)
\(=3\left(1-\frac{1}{105}\right)\)
\(=3.\frac{104}{105}=\frac{312}{105}\)
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
=> A=24497550
\(\dfrac{12}{1.5}+\dfrac{12}{5.9}+...+\dfrac{12}{93.97}+\dfrac{12}{97.101}\)
= \(3.\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{93.97}+\dfrac{4}{97.101}\right)\)
= \(3.\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{93}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
= \(3.\left(1-\dfrac{1}{101}\right)\)
= \(3.\dfrac{100}{101}\)
= \(\dfrac{300}{101}=2\dfrac{98}{101}\)